Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Geocells
Clear
  • Extreme Cold Weather Airfield Damage Repair Testing at Goose Bay Air Base, Canada

    Abstract: Rapid Airfield Damage Recovery (RADR) technologies have proven successful in temperate and subfreezing temperatures but have not been evaluated in extreme cold weather temperatures near 0°F. To address this capability gap, laboratory-scale and full-scale testing was conducted at these temperatures. Methods developed for moderate climates were adapted and demonstrated alongside methods that used snow harvested on-site as compacted backfill. After only a few days of training, seven experimental repairs were conducted by Canadian airmen at Goose Bay Air Base in Labrador, Canada, and load tested with a single-wheel C-17 load cart. Existing RADR technologies performed adequately despite the freezing temperatures, with the main tactic, techniques, and procedures modification being an increased cure time for the rapid-setting concrete surface material. Compacted snow-water slurry methods also performed well, demonstrating their ability to withstand over 500 passes of single-wheel C-17 traffic after sufficient freezing time.
  • Evaluation of Geocell-Reinforced Backfill for Airfield Pavement Repair

    Abstract: After an airfield has been attacked, temporary airfield pavement repairs should be accomplished quickly to restore flight operations. Often, the repairs are made with inadequate materials and insufficient manpower due to limited available resources. Legacy airfield damage repair (ADR) methods for repairing bomb damage consist of using bomb damage debris to fill the crater, followed by placement of crushed stone or rapid-setting flowable fill backfill with a foreign object debris (FOD) cover. While these backfill methods have provided successful results, they are heavily dependent on specific material and equipment resources that are not always readily available. Under emergency conditions, it is desirable to reduce the logistical burden while providing a suitable repair, especially in areas with weak subgrades. Geocells are cellular confinement systems of interconnected cells that can be used to reinforce geotechnical materials. The primary benefit of geocells is that lower quality backfill materials can be used instead of crushed stone to provide a temporary repair. This report summarizes a series of laboratory and field experiments performed to evaluate different geocell materials and geometries in combinations with a variety of soils to verify their effectiveness at supporting heavy aircraft loads. Results provide specific recommendations for using geocell technology for backfill reinforcement for emergency airfield repairs.
  • Rapid Airfield Damage Recovery Next Generation Backfill Technologies Comparison Experiment : Technology Comparison Experiment

    Abstract: The Rapid Airfield Damage Recovery (RADR) Next Generation Backfill Technology Comparison Experiment was conducted in July 2017 at the East Campus of the U.S. Army Engineer Research and Development Center (ERDC), located in Vicksburg, MS. The experiment evaluated three different crater backfill technologies to compare their performance and develop a technology trade-off analysis. The RADR next generation backfill technologies were compared to the current RADR standard backfill method of flowable fill. Results from this experiment provided useful information on technology rankings and trade-offs. This effort resulted in successful crater backfill solutions that were recommended for further end user evaluation.