Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Hydraulic Models
Clear
  • Wabash and Ohio River Confluence Hydraulic and Sediment Transport Model Investigation: A Report for US Army Corps of Engineers, Louisville District

    Abstract: Avulsions of the Wabash River in 2008 through 2011 at its confluence with the Ohio River resulted in significant shoaling in the Ohio River. This caused a re-alignment of the navigation channel and the need for frequent dredging. A two-dimensional numerical hydrodynamic model, Adaptive Hydraulics (AdH), was developed to simulate base (existing) conditions and then altered to simulate multiple alternative scenarios to address these sediment issues. The study was conducted in two phases, Phase 1 in 2013 – 2015 and Phase 2 in 2018 – 2020. Field data were collected and consisted of multi-beam bathymetric elevations, bed sediment samples, suspended sediment samples, and discharge and velocity measurements. The model hydrodynamic and sediment transport computations adequately replicated the water surface slope, flow splits, bed sediment gradations, and suspended sediment concentrations when compared with field data. Thus, it was shown to be dependable as a predictive tool. The alternative that produced the most desirable results included a combination of three level-crested emergent dikes on Wabash Island and four submerged dikes on the Illinois shore with a level crest from the bank to the tip of the dike. The selected alternative produced an improved sailing line while maintaining authorized channel depths.
  • Effects of Geologic Outcrops on Long-Term Geomorphic Trends: New Madrid, MO, to Hickman, KY

    Abstract: The Mississippi River between New Madrid, MO, and Hickman, KY, is of particular interest because of divergent trends in water surface profiles at the upstream and downstream ends of the reach. This report documents the investigation of the bathymetry, geology, and hydraulics of this segment of the river. The report shows that the area near River Mile 901 above Head of Passes strongly affects the river stages at low flows. This part of the river can experience high shear stresses when flows fall below 200,000 cfs, as opposed to most other locations where shear stress increases with flow. One-dimensional hydraulic modeling was also used to demonstrate that an increase of depth at a single scour hole, such as the one downstream from Hickman near River Mile 925, is unlikely to cause reach-wide degradation.
  • Rough River Outlet Works Physical Model Study

    Abstract: The US Army Corps of Engineers, Louisville District, requested the support and assistance of the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory (CHL), in the evaluation of the hydraulic performance of the replacement Outlet Works for Rough River Dam. To support the design effort, CHL constructed a 1:25.85 scale physical model. The proposed features of the model in the domain are the curved approach channel, intake structure, transition, curved conduit, stilling basin, concrete apron, and retreat channel. Tests performed to evaluate the hydraulic performance illuminated a few design concerns. To address these issues, several key design changes were made. These included the retreat channel slope, end sill design, and transition design.
  • Red River Structure Physical Model Study: Bulkhead Testing

    Abstract: The US Army Corps of Engineers, St. Paul District, and its non-federal sponsors are designing and constructing a flood risk management project that will reduce the risk of flooding in the Fargo-Moorhead metropolitan area. There is a 30-mile long diversion channel around the west side of the city of Fargo, as well as a staging area that will be formed upstream of a 20-mile long dam (referred to as the Southern Embankment) that collectively includes an earthen embankment with three gated structures: the Diversion Inlet Structure, the Wild Rice River Structure, and the Red River Structure (RRS). A physical model has been constructed and analyzed to assess the hydraulic conditions near and at the RRS for verification of the structure’s flow capacity as well as optimization of design features for the structure. This report describes the modeling techniques and instrumentation used in the investigation and details the evaluation of the forces exerted on the proposed bulkheads during emergency operations for the RRS.
  • Hydraulic Dike Effects Investigation on the Mississippi River: Natchez to Baton Rouge

    Abstract: This report documents an investigation of the hydraulic effects of dikes on water levels in the Mississippi River between Natchez, MS, and Baton Rouge, LA, conducted for the U.S. Army Corps of Engineers, Mississippi Valley Division, Vicksburg, MS. The investigation was conducted using a previously calibrated Natchez-to-Baton Rouge Adaptive Hydraulics numerical model. The objectives were to alter roughness and height variables associated with the dikes and overbanks encompassed in the numerical model and evaluate their effects on water surface elevations. Steady flow simulations were simulated for 12 May 2011 to investigate the variation in model results during the peak of the 2011 flood on the Mississippi River.
  • Red River Structure Physical Model Study

    Abstract: A proposed Red River Structure (RRS), intended to function as one of three gated structures comprising the Fargo-Moorhead Metropolitan Area Flood Risk Management Project, was tested in a general physical model. A 1:40 Froude-scale was applied to model the structure, engineered channels, existing bathymetry/topography in the Red River and overbank areas, and the proposed Southern Embankment. The physical model was used to ensure that the RRS could pass at least 104,300 cfs during the Probable Maximum Flood while maintaining a maximum pool water surface elevation of 923.5 ft. The physical model was also utilized to optimize the approach structure, stilling basin, retaining walls, and erosion protection designs. The physical modeling effort resulted in an optimized stilling basin wall, retaining wall, and end sill geometry/configuration where erosive conditions were not observed outside and adjacent to the stilling basin. Properly designed riprap (St. Paul District’s R470 gradation) proved to be successful in protecting the proposed RRS from potential scour downstream. The modified approach wall design proved to be successful in creating safe approach flow conditions as well as acceptable flow separation patterns. It is recommended that Alternative 3 be the design used going forward.
  • PUBLICATION NOTICE: Lower Columbia River Adaptive Hydraulics (AdH) Model: Development, Water Surface Elevation Validation, and Sea Level Rise Analysis

    Abstract: A numerical model of the Lower Columbia River, validated to water surface elevations, has been generated using the Adaptive Hydraulics (AdH) code. The model boundary conditions include an ocean tidal boundary and five inflows: the Lewis, Cowlitz, Willamette, and Sandy Rivers, and the Columbia River at Bonneville Lock and Dam. The model, which spans approximately 146 river miles, accurately reproduces water surface elevations measured in the field at several locations along the model domain. An examination of the AdH model’s Friction Library was also conducted. The Friction Library was used in this application to estimate the effects of pile dikes. Rather than model individual piles in the model mesh, the piles were modeled using the Friction Library’s submerged vegetation material type. Through testing of this application, it was determined that the Friction Library approach, which enhances model run time and efficiency, can accurately reproduce the global effects of pile dike fields. Additionally, the validated model was used to analyze three sea level rise (SLR) scenarios, which correspond to predicted SLR at Astoria, OR, at 50, 75, and 100 years from the present (0.5 meter [m], 1.0 m, and 1.5 m, respectively).
  • PUBLICATION NOTICE: Investigation into Laboratory Bathymetric Measurement Techniques

    ABSTRACT: There is no universally accepted way to accurately and efficiently measure bathymetry in laboratory hydraulic models. Remote sensing techniques can measure bathymetry without making contact with the model, and some remote sensing techniques can measure the bathymetry in laboratory models without draining the water. The four categories of remote sensing technology investigated in this report are echo sounding technology, laser technology, image processing technology, and radar technology. The technology of each category has strengths and limitations, but can be used in the laboratory to measure bathymetry. Echo sounding technology works well in environments with suspended sediment, but the accuracy is reduced by large beam footprints. Laser technology does not perform as well with suspended sediment but can provide high-accuracy bathymetric measurements. Stereophotography, discussed in the image processing technology section, requires optically clear water and can provide very accurate bathymetric mapping. Radar technology can be very helpful when sub-bottom stratigraphy is important. Technology from each of the categories has been scaled for field application to measure bathymetry and submerged coastal structures.