Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Ships
Clear
  • Houston Ship Channel Expansion Channel Improvement Project (ECIP) Numerical Modeling Report: Increased Channel Width Analysis

    Abstract: The Houston Ship Channel is one of the busiest deep-draft navigation channels in the United States and must be able to accommodate larger vessel dimensions over time. The U.S. Army Engineer District, Galveston (SWG) requested the U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory perform hydrodynamic and sediment modeling of proposed modifications along the Houston Ship Channel. The modeling results are necessary to provide data for salinity and sediment transport analysis as well as ship simulation studies. SWG provided a project alternative that includes channel widening, deepening, and bend easing. After initial analysis, two additional channel widths in the bay portion of the Houston Ship Channel were requested for testing. The results of these additional channel widths are presented in this report. The model shows that the salinity does not vary significantly due to the channel modifications being considered for this project. Changes in salinity are 2 parts per thousand or less. The tidal prism increases by less than 2% when the project is included, and the tidal amplitudes increase by no more than 0.01 meter. The residual velocity vectors do vary in and around areas where project modifications are made.
  • PUBLICATION NOTICE: Towing Vessel Delays and Barge Lane Navigability along the Houston Ship Channel, Texas

     Link: http://dx.doi.org/10.21079/11681/35182Report Number: ERDC/CHL TR-20-1Title: Towing Vessel Delays and Barge Lane Navigability along the Houston Ship Channel, TexasBy Kenneth N. Mitchell, Patricia K. DiJoseph, Brandan M. Scully, and Marin M. KressApproved for Public Release; Distribution is Unlimited January 2020Abstract: This project used