Publication Notices

Notifications of New Publications Released by ERDC

Contact ERDC Library

 

erdclibrary@ask-a-librarian.info

601.501.7632 - text
601.634.2355 - voice

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Streamflow
Clear
  • Mississippi River Climate Model–Based Hydrograph Projections at the Tarbert Landing Location

    Abstract: To better understand and prepare for the possible effects associated with potential climate changes on the lower Mississippi River, the State of Louisiana Coastal Protection and Restoration Authority sought information on the historical, current, and projected future hydrodynamics of the Mississippi River. To this end, flow duration curves (FDC) for the Tarbert Landing location were generated, based on climate models derived from two of the four scenarios of the Coupled Model Intercomparison Project, Phase 5 (CMIP5), multimodel ensemble representative concentration pathways (RCPs). The global CMIP5 datasets were used by the variable infiltration capacity land surface model to produce a runoff dataset, using a bias-correction spatial disaggregation approach. The runoff datasets were then applied to simulate streamflow using the Routing Application for Parallel computatIon of Discharge (RAPID) river routing model. Based on the streamflow, FDCs were calculated for 16 CMIP5 as well as observed historical data at the Tarbert Landing location. Key observations from the results are that the 90th percentile exceedance of the simulated versus the observed flows is more frequent for the RCP 8.5 scenario than for the RCP 4.5 scenario and that the maximum annual flows for the RCP 8.5 scenario are generally smaller than for the RCP 4.5 scenario.
  • Numerical Modeling of Supercritical Flow in the Los Angeles River: Part I: Adaptive Hydraulics Numerical Modeling of the 1943 Physical Model

    Abstract: The Los Angeles District of the US Army Corps of Engineers is assisting the City of Los Angeles with restoration efforts on the Los Angeles River. The city wishes to restore portions of the channelized river to a more natural state with riparian/vegetative green spaces for both wildlife and public recreation usage. The Los Angeles River provides an important role for the City of Los Angeles from a flood-control perspective, and functionality needs to be preserved when contemplating system modifications. This report details the development of an Adaptive Hydraulics (AdH) numerical model capable of representing this complex system consisting of both subcritical and supercritical flow regimes. Due to limited hydraulic data in the study area, an extensive model validation to observed data was not possible. To bridge the data gap, a numerical model was developed from a previously completed physical model study with extensive quantitative measurements and qualitative reports of hydraulic conditions. This approach allowed engineers to evaluate the effectiveness of the AdH model in representing this complex hydraulic system along with determining the best methodology to accurately represent the existing conditions. This study determined appropriate model parameters that will be utilized in further numerical modeling efforts to evaluate system modifications associated with restoration efforts.
  • Is Mean Discharge Meaningless for Environmental Flow Management?

    PURPOSE: River ecosystems are highly dependent on and responsive to hydrologic variability over multiple time scales (e.g., hours, months, years). Fluctuating river flows present a key challenge to river managers, who must weigh competing demands for freshwater. Environmental flow recommendations and regulations seek to provide management targets balancing socio-economic outcomes with maintenance of ecological integrity. Often, flow management targets are based on average river conditions over temporal windows such as days, months, or years. Here, three case studies of hydrologic variability are presented at each time scale, which demonstrate the potential pitfalls of mean-based environmental flow criteria. Each case study shows that the intent of the environmental flow target is not met when hydrologic variability is considered. While mean discharge is inadequate as a single-minded flow management target, the consequences of mean flow prescriptions can be avoided in environmental flow recommendations. Based on these case studies, a temporal hierarchy of environmental flow thresholds is proposed (e.g., an instantaneous flow target coupled with daily and monthly averages), which would improve the efficacy of these regulations.
  • Hydrologic Analysis of Field Delineated Ordinary High Water Marks for Rivers and Streams

    Abstract: Streamflow influences the distribution and organization of high water marks along rivers and streams in a landscape. The federal definition of ordinary high water mark (OHWM) is defined by physical and vegetative field indicators that are used to identify inundation extents of ordinary high water levels without any reference to the relationship between streamflow and regulatory definition. Streamflow is the amount, or volume, of water that moves through a stream per unit time. This study explores regional characteristics and relationships between field-delineated OHWMs and frequency-magnitude streamflow metrics derived from a flood frequency analysis. The elevation of OHWM is related to representative constant-level discharge return periods with national average return periods of 6.9 years using partial duration series and 2.8 years using annual maximum flood frequency approaches. The range in OHWM return periods is 0.5 to 9.08, and 1.05 to 11.01 years for peaks-over-threshold and annual maximum flood frequency methods, respectively. The range of OHWM return periods is consistent with the range found in national studies of return periods related to bankfull streamflow. Hydraulic models produced a statistically significant relationship between OHWM and bank-full, which reinforces the close relationship between the scientific concept and OHWM in most stream systems.
  • Formulation of a Multi-Scale Watershed Ecological Model Using a Statistical Approach

    Abstract: The purpose of this special report is to provide a statistical stepwise process for formulation of ecological models for application at multiple scales using a stream condition index (SCI). Given the global variability of aquatic ecosystems, this guidance is for broad application and may require modification to suit specific watersheds or stream reaches. However, the general statistical treatise provided herein applies across physiographies and at multiple scales. The Duck River Watershed Assessment in Tennessee was used, in part, to develop and test this multiscale, statistical approach; thus, it is considered a case example and referenced throughout this report. The findings of this study can be utilized to (1) prioritize water-sheds for restoration, enhancement, and conservation; (2) plan and conduct site-specific, intensive ecosystem studies; and (3) assess ecosystem outcomes (that is, ecological lift) applicable to future with and without restoration actions including alternative, feasibility, and cost-benefit analyses and adaptive management.
  • PUBLICATION NOTICE: Utilizing Stream Flows to Forecast Dredging Requirements

    Abstract: In recent years, the United States Army Corps of Engineers (USACE) has spent an average of approximately a billion dollars annually for navigation channel maintenance dredging. To execute these funds effectively, USACE districts must determine which navigation channels are most in need of maintenance dredging each year. Traditionally, dredging volume estimates for Operations and Maintenance budget development are based on experiential knowledge and historic averages, with the effects of upstream, precipitation-driven streamflows considered via general-rule approximations. This study uses the Streamflow Prediction Tool, a hydrologic routing model driven by global weather forecast ensembles, and dredging records from the USACE Galveston District to explore relationships between precipitation-driven inland channel flow and subsequent dredged volumes in the downstream coastal channel reaches. Spatially based regression relationships are established between cumulative inland flows and dredged volumes. Results in the test cases of the Houston Ship Channel and the Sabine-Neches Waterway in Texas indicate useful correlations between the computed streamflow volumes and recorded dredged volumes. These relationships are stronger for channel reaches farther inland, upstream of the coastal processes that are not included in the precipitation-driven hydrologic model.