Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Geophysical surveys
Clear
  • Detecting Clandestine Tunnels by Using Near-Surface Seismic Techniques

    Abstract: Geophysical detection of clandestine tunnels is a complex problem that has been met with limited success. Multiple methods have been applied spanning several decades, but a reliable solution has yet to be found. This report presents shallow seismic data collected at a tunnel test site representative of geologic settings found along the southwestern U.S. border. Results demonstrate the capability of using compressional wave diffraction and surface-wave backscatter techniques to detect a purpose-built subterranean tunnel. Near-surface seismic data were also collected at multiple sites in Afghanistan to detect and locate subsurface anomalies (e.g., data collected over an escape tunnel discovered in 2011 at the Sarposa Prison in Kandahar, Afghanistan, which allowed more than 480 prisoners to escape, and data from another shallow tunnel recently discovered at an undisclosed location). The final example from Afghanistan is the first time surface-based seismic methods have detected a tunnel whose presence and location were not previously known. Seismic results directly led to the discovery of the tunnel. Interpreted tunnel locations for all examples were less than 2 m of the actual location. Seismic surface wave backscatter and body-wave diffraction methods show promise for efficient data acquisition and processing for locating purposefully hidden tunnels within unconsolidated sediments.
  • PUBLICATION NOTICE: Fine-Grained Sediment within Olcott Harbor, Eighteenmile Creek, NY

    Abstract: Olcott Harbor, located at the mouth of Eighteenmile Creek and Lake Ontario, and a Great Lake Area of Concern, provides a temporary sink for contaminated, fine-grained sediment transported downstream from the Superfund site near Lockport, NY. The volume of fine-grained sediment currently stored in Olcott Harbor and Eighteenmile Creek is unknown, complicating remediation efforts. The US Army Corps of Engineers (USACE), Buffalo District (LRB), has partnered with the New York State Department of Environmental Conservation to address the mitigation of contaminated sediment accumulating within Eighteenmile Creek. As part of this effort, researchers from the US Army Engineer Research and Development Center (ERDC) collaborated with LRB to delineate fine-grained sediment regions from coarse-grained regions in Olcott Harbor and Eighteenmile Creek via a geophysical survey in July 2017. Where possible, ERDC also estimated the thickness of the fine-grained sediment areas to determine overall fine-sediment volume. Sidescan sonar was used to map the surface transition from the coarser-grained sediment in the outer harbor to the finer-grained sediment in the inner harbor. Chirp sub-bottom profiles successfully imaged the subsurface transition from coarse- to fine-grained sediment in some areas but provided only limited thickness data. This technical note summarizes the field effort, data processing, and final interpretations.
  • PUBLICATION NOTICE: Application of Chirp Acoustic Sub-Bottom Data in Riverine Environments: Identification of Underlying Rocky Hazards at Cape Girardeau, Missouri, and Thebes, Illinois

    NOTE: A revised version of the report MRG&P Report No. 31 has been published. While the link below remains valid, the PDF attached to the record is new. It is now 47 pages instead of 45 pages after the changes made. Please update your records as needed.
  • PUBLICATION NOTICE: Application of Chirp Acoustic Sub-Bottom Data in Riverine Environments: Identification of Underlying Rocky Hazards at Cape Girardeau, Missouri, and Thebes, Illinois

    ABSTRACT: Shallow acoustic reflection (chirp) data have been utilized to map the elevation of underlying stratigraphy in a wide range of aqueous environments. Of particular concern in riverine regions is the elevation of near-surface underlying rock that, if exposed during normal migration of sedimentary bedforms, can cause grounding and damage to vessels transiting the region during periods of low water. Given the ephemeral nature of the rock’s exposure, traditional surveying methods are insufficient to map rock when it is covered by a thin veneer of sediment, increasing the potential hazard. Accordingly, the US Army Corps of Engineers, St. Louis District, (MVS) explored the use of chirp sub-bottom surveys to identify buried rock within the Mississippi River in the vicinity of Cape Girardeau, MO, and Thebes, IL. Hazard maps showing the distribution of buried rock were generated, and the base of the mobile sediment layer was identified where possible. These data will allow MVS to accurately identify potentially hazardous regions during periods of low water. Although the study did not result in the complete mapping of all near-surface geologic hazards, regions that warrant further study are identified, and modifications to the original survey plan are provided to improve the accuracy of future data collection efforts.