Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: Explosives--Environmental aspects
  • Overview of Microscale Analytical Methods for the Quantitative Detection of Bioaccumulative Contaminants in Small Tissue Masses

    Abstract: For many bioaccumulation studies, generation of large sample masses of exposed organisms is challenging or even prohibitive. Therefore, the use of smaller sample masses for analysis without compromising data quality or quantitative level achieved is desirable. To this end, a variety of microanalytical procedures have been developed that used 1 g or less of tissue to address specific experimental challenges. However, these methods have not been systematically evaluated or published. The present work evaluates the current state of the microanalytical methods reported and identifies additional needs that would benefit US Army Corps of Engineers (USACE) research and navigation dredging programs. Discussions with commercial laboratories revealed that they typically do not accept small sample masses and require individual sample masses ranging from 10 to 20 g wet weight of tissue per analysis. If they do analyze a small mass sample, they routinely do not modify their standard process, resulting in detection and reporting limits orders of magnitude higher; therefore, essentially useless nondetect data are generated for regulatory decisions. To address the lack of commercial availability of microanalytical methods, we recommend pursuing method development and subsequent validation of microscale extraction and analysis of a variety of common contaminant compounds in tissue matrices.
  • Preparative, Extraction, and Analytical Methods for Simultaneous Determination of Legacy and Insensitive Munition (IM) Constituents in Aqueous, Soil or Sediment, and Tissue Matrices

    Abstract: No standard method exists for determining levels of insensitive munition (IM) compounds in environmental matrices. This project resulted in new methods of extraction, analytical separation and quantitation of 17 legacy and 7 IM compounds, daughter products of IM, and other munition compounds absent from USEPA Method 8330B. Extraction methods were developed for aqueous (direct-injection and solid-phase extraction [SPE]), soil, sediment, and tissue samples using laboratory-spiked samples. Aqueous methods were tested on 5 water sources, with 23 of 24 compounds recovered within DoD QSM Ver5.2 limits. New solvent extraction (SE) methods enabled recovery of all 24 compounds from 6 soils within QSM limits, and a majority of the 24 compounds were recovered at acceptable levels from 4 tissues types. A modified chromatographic treatment method removed analytical interferences from tissue extracts. Two orthogonal high-performance liquid chromatography-ultraviolet (HPLC-UV) separation methods, along with an HPLC–mass spectrometric (HPLC-MS) method, were developed. Implementing these new methods should reduce labor and supply costs by approximately 50%, requiring a single extraction and sample preparation, and 2 analyses rather than 4. These new methods will support environmental monitoring of IM and facilitate execution of risk-related studies to determine long-term effects of IM compounds.
  • PUBLICATION NOTICE: Environmental Analysis of Aqueous 3-Nitro-1,2,4-Triazol-5-One (NTO) by Ion Chromatography with Conductivity Detection

    Abstract:  The newly fielded insensitive high-explosive compound 3-nitro-1,2,4-triazol-5-one (NTO) is mobile in the environment due to its high water solubility and low affinity for soils. The weak acidity of NTO (pKa 3.67) presents a challenge to environmental analysis by high-performance liquid chromatography but enables direct separation by ion chromatography (IC). Here we developed an IC method for NTO in natural water, soil, and postdetonation residue. A gradient potassium hydroxide separation effectively resolved the inorganic anions (F−, Cl−, NO2−, Br−, SO42−, NO3−, and PO43−) and NTO in 18 minutes. Suppressed conductivity of aqueous NTO was linear from 10 µg/L to 10 mg/L with a detection limit of 3 µg/L and quantitation limit of 9 µg/L. Recoveries of NTO-spiked natural water samples were 93%–118% at concentrations of 30, 100, and 500 µg/L. Recoveries of NTO-spiked soil samples were 91%–114% using deionized water (DI) extraction. NTO was completely recovered with DI-extraction in two postdetonation residue samples of IMX-101 but only partially recovered (58% and 69%) in two higher-concentration residues, potentially due to incomplete dissolution of the energetic particle matrix. These results support IC for confirmation analysis of environmental samples and for screening natural water samples while simultaneously analyzing inorganic ions.
  • PUBLICATION NOTICE: Sieve Stack and Laser Diffraction Particle Size Analysis of IMX-104 Low-Order Detonation Particles

     Link: Number: ERDC/CRREL TR-20-3Title: Sieve Stack and Laser Diffraction Particle Size Analysis of IMX-104 Low-Order Detonation ParticlesBy Matthew F. Bigl, Samuel A. Beal, Michael R. Walsh, Charles A. Ramsey, and Katrina M. BurchApproved for Public Release; Distribution is Unlimited February