Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Marshes
Clear
  • Comprehensive Marsh Model Demonstration—Seven Mile Island Innovation Laboratory: Integrating Hydrodynamic, Morphodynamic, and Vegetation Modeling Components Using the Landlab Toolkit

    Abstract: Marshes are highly dynamic landscapes that are shaped through feedbacks between hydrodynamic, morphodynamic, and ecological processes. Future marsh resilience is therefore dependent on the interaction between these different drivers rather than any individual piece. Marshes face a variety of threats, both natural and anthropogenic, resulting in a need for restoration actions that increase survivability. Because many of these threats are unprecedented or acting at unprecedented rates, statistical models do not adequately represent future conditions and require process-based models to better capture the complex interactions between both physical and ecological processes. This report demonstrates how to develop a comprehensive marsh model that integrates tidal flow, morphodynamics, and vegetation growth using the Python based Landlab toolkit. The model was applied to a site within the Seven Mile Island Innovation Laboratory complex in coastal New Jersey.
  • Development and Testing of the Sediment Distribution Pipe (SDP): A Pragmatic Tool for Wetland Nourishment

    Abstract: Standard dredging operations during thin layer placement (TLP) projects are labor intensive as crews are necessary to periodically move the outfall location, which can have lasting adverse effects on the marsh surface. In an effort to increase efficiency during TLP, a novel Sediment Distribution Pipe (SDP) system was investigated. This system offers multiple discharge points along the pipeline to increase the sediment distribution while reducing pipeline movements. An SDP Modeling Application (SDPMA) was developed to assist in the design of SDP field applications by quickly assessing the pressure and velocity inside the discharge pipe and approximating the slurry throw distances. An SDP field proof of concept was performed during a two-phase TLP on Sturgeon Island, New Jersey, in 2020. The SDPMA was shown to be an accurate method of predicting performance of the SDP. The SDP was successful at distributing dredge material across the placement site; however, further research is warranted to better quantify performance metrics.
  • PUBLICATION NOTIFICATION: Thin Layer Placement of Sediments for Restoring Ecological Function to Submerging Salt Marshes: A Quantitative Review of Scientific Literature

     Link: http://dx.doi.org/10.21079/11681/35373Report Number: ERDC/TN-DOER-E44Title: Thin Layer Placement of Sediments for Restoring Ecological Function to Submerging Salt Marshes: A Quantitative Review of Scientific Literatureby Christine M. VanZomeren and Candice D. PiercyApproved for Public Release; Distribution is Unlimited January 2020Purpose: