Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Dredged Material
Clear
  • Coastal Breeding Bird Phenology on the Dredged-Material Islands of the Baptiste Collette Bayou, US Army Corps of Engineers, New Orleans District, Louisiana

    Abstract: Coastal bird populations in North America have experienced significant population declines over the past four decades, and many species have become dependent upon human-made islands and other sediment-based habitats created through dredged material deposition. We monitored the breeding phenology of coastal bird populations utilizing dredged-material islands and open depositional areas in the Baptiste Collette Bayou in coastal Louisiana. Monitoring began in early May, prior to when most coastal species begin nesting, and continued through late August, when most breeding activity has ceased. Semimonthly surveys included area searches by foot and boat. Two deposition areas and one island supported large numbers of foraging, roosting, or breeding birds; surveys on these areas included using spotting scopes to identify species and count nests or young. Six islands and two open deposition areas were monitored. We also collected high-definition and lidar imagery using an uncrewed aerial system (UAS) in June, during peak nesting season. We recorded 77,474 cumulative detections of 68 species. Virtually all colonial nesting birds (terns and skimmers) nested on Gunn Island in 2021. We discuss these results in the context of dredged-material deposition by the US Army Corps of Engineers, New Orleans District, and offer recommendations for management of these areas.
  • Proceedings from the Soft Substrate Island Design Workshop

    Abstract: This report summarizes the activities of the Soft Substrate Design Workshop held virtually on 08 September 2021. The 28 participants from federal, state, local, and academic organizations discussed designing and constructing islands with soft sediments in inland waterways. They were introduced to the US Army Corps of Engineers’ (USACE) Engineering With Nature® (EWN®) initiative and the vision for Tri-County Planning Commission (Peoria, Illinois). An overview of collaborative projects using landscape architecture and EWN principles was provided. The focus of discussion was on two primary waterways, the Upper Mississippi River System, and Illinois River. Participants discussed their experience associated with designing and constructing islands with and on soft sediments prior to breakout sessions to discuss specific design and contracting elements. The groups were brought together to discuss design techniques that could be implemented in the Upper Mississippi River and Illinois River systems.
  • Beneficial Use of Dredged Material: A Workshop to Explore Engineered Drainage Soils for Stormwater Management

    PURPOSE: Beneficial use of dredged material in engineered soils is an alternative to achieve environmental and economic sustainability for waterway operations. Engineered soils can combine navigation and environmental dredging with municipal and commercial waste streams to create a valuable commercial soil product while reducing public operating costs, creating economic opportunity, and creating better soil products for lower cost. The need, opportunities, and challenges to establishing an Illinois Waterway-based commercial soil industry were explored by river, highway, stormwater, environmental resource managers, and industry experts in a workshop in Peoria, IL, on 4–5 September 2019.
  • Dredged Material Can Benefit Submerged Aquatic Vegetation (SAV) Habitats

    Purpose: This technical note (TN) was developed by the US Army Engineer Research and Development Center–Environmental Laboratory (ERDC-EL) to provide an overview of the ecosystem services delivered by submerged aquatic vegetation (SAV) to estuarine and coastal ecosystems and to describe potential methods for the beneficial use of dredged material (BUDM) to aid in SAV restoration. Although dredging tends to have a negative association with SAV habitats, BUDM may provide an opportunity to expand suitable SAV habitat to areas where depth is the primary limiting factor. Recent in situ observations have shown that SAV has opportunistically colonized several dredged-material placement sites. This TN provides context on BUDM for SAV habitat restoration to encourage increased strategic placement.