Publication Notices

Notifications of the Newest Publications and Reports Released by ERDC

Contact ERDC Library

 

erdclibrary@ask-a-librarian.info

601.501.7632 - text
601.634.2355 - voice

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Publications: Geotechnical and Structures Laboratory (GSL)
Clear
  • Numerical Modeling of Mesoscale Infrasound Propagation in the Arctic

    Abstract: The impacts of characteristic weather events and seasonal patterns on infrasound propagation in the Arctic region are simulated numerically. The methodology utilizes wide-angle parabolic equation methods for a windy atmosphere with inputs provided by radiosonde observations and a high-resolution reanalysis of Arctic weather. The calculations involve horizontal distances up to 200 km for which interactions with the troposphere and lower stratosphere dominate. Among the events examined are two sudden stratospheric warmings, which are found to weaken upward refraction by temperature gradients while creating strongly asymmetric refraction from disturbances to the circumpolar winds. Also examined are polar low events, which are found to enhance negative temperature gradients in the troposphere and thus lead to strong upward refraction. Smaller-scale and topographically driven phenomena, such as low-level jets, katabatic winds, and surface-based temperature inversions, are found to create frequent surface-based ducting out to 100 km. The simulations suggest that horizontal variations in the atmospheric profiles, in response to changing topography and surface property transitions, such as ice boundaries, play an important role in the propagation.
  • Evaluation of a Prototype Integrated Pavement Screed for Screeding Asphalt or Concrete Crater Repairs

    Abstract: Finishing, or screeding, the hot mix asphalt or rapid-setting concrete surface of a crater repair is important for rapid airfield damage recovery (RADR) since it determines the aircraft ride surface quality. The objective of RADR repairs is to expediently produce a flush repair, defined as ±0.75 in. of the surrounding pavement surface, with minimal logistical and personnel burden. Multiple screeds were previously evaluated; the most recent project proposed a prototype design of a telehandler-operated integrated screed for both small and large repairs using asphalt or concrete. This project’s objective was to finalize the prototype design and fabricate and test the prototype RADR screed. The prototype RADR screed was successful for small repairs (8.5×8.5 ft). Large repairs (30×30 ft) were generally successful with modest repair quality criteria (RQC) issues being the only notable deficiencies. Large concrete repair RQC issues were attributed to plastic formwork movement, and large asphalt repair RQC issues were attributed to compaction issues or improper roll-down factors. Methods to mitigate these factors were investigated but should be further evaluated. Overall, the RADR screed was successful from technical perspectives but, functionally, is 600-800 lb overweight. Weight reduction should be considered before entering production.
  • Stability Analysis of Old River Low Sill Structure

    Abstract: An updated stability analysis was performed on the Old River Low Sill Structure due to a change in the operating conditions from historic river sedimentation. Sedimentation of the Mississippi River channel since the 1973 spring flood has caused higher river stages at lower discharges. Numerical methods used included nonlinear analysis of pile group stability, seepage analyses, and limit equilibrium methods. The structure’s foundation was compromised during the 1973 flood, and emergency repairs were conducted to prevent scouring and undermining of the foundation by the flood scour. Rehabilitation included the reconstruction of a failed wing wall on the left abutment, rock and riprap fill in the forebay channel, and emergency grouting to fill the scour hole beneath the structure. An operating restriction was emplaced to limit the differential head across the structure due to flood damage. Taking these conditions into account, results from an updated analysis showed that full headwater uplift caused increased tension in the piles, while the increased body load caused increased compressive loads in the piles. Review of piezometric monitoring and the seepage analyses showed that full headwater uplift is unlikely, indicating the foundation grouting adequately sealed the scour hole beneath the structure. Analysis results exhibited lower magnitude compression and tension loads in the piles with design load cases compared to previous analyses. Recommendations from these analyses indicate that increased monitoring and additional investigation may support increasing the differential head limitation.
  • Legacy Datums and Changes in Benchmark Elevation through Time at the Old River Control Structure, Louisiana

    Abstract: Vertical datums used in the study area at the Old River Control Structure in southern Louisiana have involved Memphis Datum, Mean Gulf Level, Mean Sea Level, Mean Sea Level Datum of 1929, National Geodetic Vertical Datum of 1929, and the North American Vertical Datum of 1988. The focus of this study was to examine historic benchmarks in the study area to determine the magnitude of elevation changes associated with the different legacy datums that have been used by the US Army Corps of Engineers. Comparison of elevation values across these legacy datums has involved examining historic hydrographic surveys, compiling a list of known benchmarks from these surveys, and comparing their elevation values against publications involving spirit-leveling surveys from the Lower Mississippi Valley and the National Geodetic Survey database for benchmarks. This study describes the history of legacy datums, floodplain geology at the Old River Control Structure, potential subsidence impacts affecting the benchmarks, methods for identification and tracking benchmarks, and the results obtained from this study.
  • The Old River, Mississippi River, Atchafalaya River, and Red River (OMAR) Technical Assessment

    NOTE: The Old River, Mississippi River, Atchafalaya River, and Red River (OMAR) Technical Assessment is a 9-volume series of reports that was produced under the direction of the Mississippi River Geomorphology & Potamology Program. An abstract from the main report, Volume 1, is listed below, along with the individual volume titles and links to the relevant reports. ABSTRACT: This is the main report of Old River, Mississippi River, Atchafalaya River, and Red River (OMAR) Technical Assessment. The primary objective of the OMAR Technical Assessment was to conduct a comprehensive evaluation that aimed to understand the impacts of former and potential changes to the system in the vicinity of the Old River Control Complex (ORCC) over time, the water and sediment delivery regime at the ORCC, and the effects to the river system surrounding the ORCC. Scenarios evaluated in this technical assessment were designed to investigate potential system responses to a wide range of possible operational alternatives and identify knowledge gaps in current understanding of system behavior. This report summarizes and synthesizes the individual reports detailing the investigations into specific aspects of the ORCC and the surrounding region.
  • Effects of Impure Water Sources on Early-Age Properties of Calcium Sulfoaluminate Cements for Rapid Airfield Damage Recovery

    Abstract: In austere environments with limited access to clean water, it is advantageous to use nonpotable water for construction (i.e., mixing water for concrete.) In rapid-response situations such as rapid airfield damage recovery (RADR), the use of calcium sulfoaluminate (CSA) cements is beneficial for expedient pavement repairs because of their rapid strength gain characteristics. However, the hydration products formed by CSA cements are substantially different from those formed by ordinary portland cement and might react differently to impurities that water sources may contain. A laboratory study component investigated the application of various salts and impure sources of mixing water with commercially available CSA cement-based products. A field component studied the application of naturally occurring impure water sources for RADR. Recommendations are made for implementation of impure mixing water for RADR using commercially available flowable fill and concrete products made with CSA cement.
  • Validation of the Automatic Dynamic Cone Penetrometer

    Abstract: The U.S. military requires a rapid means of measuring subsurface soil strength for construction and repair of expeditionary pavement surfaces. Traditionally, a dynamic cone penetrometer (DCP) has served this purpose, providing strength with depth profiles in natural and prepared pavement surfaces. To improve upon this device, the Engineer Research and Development Center (ERDC) validated a new battery-powered automatic dynamic cone penetrometer (A-DCP) apparatus that automates the driving process by using a motor-driven hammering cap placed on top of a traditional DCP rod. The device improves upon a traditional DCP by applying three to four blows per second while digitally recording depth, blow count, and California Bearing Ratio (CBR). An integrated Global Positioning Sensor (GPS) and Bluetooth® connection allow for real-time data capture and stationing. Similarities were illustrated between the DCP and the A-DCP by generation of a new A-DCP calibration curve. This curve relates penetration rate to field CBR that nearly follows the DCP calibration with the exception of a slight offset. Field testing of the A-DCP showed less variability and more consistent strength measurement with depth at a speed five times greater than that of the DCP with minimal physical exertion by the operator.
  • Probabilistic Neural Networks that Predict Compressive Strength of High Strength Concrete in Mass Placements using Thermal History

    Abstract: This study explored the use of artificial neural networks to predict UHPC compressive strengths given thermal history and key mix components. The model developed herein employs Bayesian variational inference using Monte Carlo dropout to convey prediction uncertainty using 735 datapoints on seven UHPC mixtures collected using a variety of techniques. Datapoints contained a measured compressive strength along with three curing inputs (specimen maturity, maximum temperature experienced during curing, time of maximum temperature) and five mixture inputs to distinguish each UHPC mixture (ce-ment type, silicon dioxide content, mix type, water to cementitious material ratio, and admixture dosage rate). Input analysis concluded that predictions were more sensitive to curing inputs than mixture inputs. On average, 8.2% of experimental results in the final model fell outside of the predicted range with 67.9%of these cases conservatively underpredicting. The results support that this model methodology is able to make sufficient probabilistic predictions within the scope of the provided dataset but is not for extrapo-lating beyond the training data. In addition, the model was vetted using various datasets obtained from literature to assess its versatility. Overall this model is a promising advancement towards predicting mechanical properties of high strength concrete with known uncertainties.
  • Waterborne Geophysical Investigation to Assess Condition of Grouted Foundation: Old River Control Complex – Low Sill Structure, Concordia Parish, Louisiana

    Abstract: The Old River Low Sill Structure (ORLSS) at the Old River Control Complex (ORCC) in Concordia Parish, LA, is a steel pile-founded, gated reinforced-concrete structure that regulates the flow of water into the Atchafalaya River to prevent an avulsion between the Mississippi River and the Atchafalaya River. A scour hole that formed on the southeast wall of ORLSS during the Mississippi River flood of 1973 was remediated with riprap placement and varied mixtures of self-leveling, highly pumpable grout. Non-invasive waterborne geophysical surveys were used to evaluate the distribution and condition of the grout within the remediated scour area. Highly conductive areas were identified from the surveys that were interpreted to consist mostly of grout. Resistive responses, likely representing mostly riprap and/or sediment, were encountered near the remediated scour area periphery. A complex mixture of materials in the remediated scour area is interpreted by the more gradual transitions in the geophysical response. Survey measurements immediately beneath ORLSS were impeded by the abundance of steel along with the structure itself. The survey results and interpretation provide a better understanding of the subsurface properties of ORLSS.
  • Calculation of Levee-Breach Widening Rates

    Abstract: Inundation modeling is often conducted for levee systems to understand current flood risks. The extent of inundation caused by a breach in the levee is highly influenced by the widening rate of the levee breach. This study presents an approach for calculating levee-breach widening rates based on average flow velocity through the breach, embankment height, and erosion characteristics of the soil. Estimates of soil erodibility are derived through an analysis of the measurements of soil erodibility presented in the National Cooperative Highway Research Program (NCHRP) Report 915 database. Levee-breach widening rate curves are calculated based on these erosion properties to demonstrate the approach, and default curves are presented for typical levees built from coarse-grained soils and fine-grained soils. While the most accurate approach for a site is to calculate site-specific widening rate curves based on estimates of local soil erodibility, the default curves presented provide a suitable starting point for initial inundation modeling.