Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Technology
Clear
  • Flowering Rush Control in Hydrodynamic Systems: Part 1: Water Exchange Processes

    Abstract: In 2018, field trials evaluated water-exchange processes using rhodamine WT dye to provide guidance on the effective management of flowering rush (Butomus umbellatus L.) at McNary Dam and Reservoir (Wallula Lake, 15,700 ha). Additional evaluations determined the effectiveness of BubbleTubing (hereafter referred to as bubble curtain) at reducing water exchange within potential flowering rush treatment areas. Dye readings were collected from multiple sampling points at specific time intervals until a dye half-life could be determined. Whole-plot dye half-lives at sites without bubble curtain ranged 0.56–6.7 h. In slower water-exchange sites (≥2.6 h dye half-life), the herbicide diquat should have a sufficient contact time to significantly reduce flowering rush aboveground biomass. Other sites demonstrated very rapid water exchange (<1.5 h dye half-life), likely too rapid to effectively control flowering rush using chemical treatments without the use of a barrier or curtain to slow water exchange. At one site, the use of the bubble curtain increased the dye half-life from 3.8 h with no curtain to 7.6 and 7.1 h with a bubble curtain. The bubble curtain’s ability to slow water exchange will provide improved chemical control and increase the potential for other chemical products to be effectively used.
  • Analysis of Spectropolarimetric Responses in the Visible and Infrared for Differentiation between Similar Materials

    Abstract: Spectropolarimetric research has focused on target detections of materials that have a high degree of contrast from background materials, such as identification of a manmade object embedded in a vegetative background. This study presents an approach using spectropolarimetric imagery in visible, shortwave infrared, and longwave infrared bands to differentiate between similar natural and manmade materials. The method employs Michelson contrast and Kruskal-Wallis one-way analysis of variance (ANOVA) H-test to determine if a distinction can be found in pairwise comparisons of similar and different materials using the Stokes parameters in the visible, shortwave infrared, and longwave infrared bands. Results showed that similar natural and manmade materials were differentiable in spectropolarimetric imagery using the Michelson contrast and ANOVA. This approach provides a way to use spectropolarimetric imagery to distinguish between materials that are similar to each other.
  • Evaluation of a Prototype Integrated Pavement Screed for Screeding Asphalt or Concrete Crater Repairs

    Abstract: Finishing, or screeding, the hot mix asphalt or rapid-setting concrete surface of a crater repair is important for rapid airfield damage recovery (RADR) since it determines the aircraft ride surface quality. The objective of RADR repairs is to expediently produce a flush repair, defined as ±0.75 in. of the surrounding pavement surface, with minimal logistical and personnel burden. Multiple screeds were previously evaluated; the most recent project proposed a prototype design of a telehandler-operated integrated screed for both small and large repairs using asphalt or concrete. This project’s objective was to finalize the prototype design and fabricate and test the prototype RADR screed. The prototype RADR screed was successful for small repairs (8.5×8.5 ft). Large repairs (30×30 ft) were generally successful with modest repair quality criteria (RQC) issues being the only notable deficiencies. Large concrete repair RQC issues were attributed to plastic formwork movement, and large asphalt repair RQC issues were attributed to compaction issues or improper roll-down factors. Methods to mitigate these factors were investigated but should be further evaluated. Overall, the RADR screed was successful from technical perspectives but, functionally, is 600-800 lb overweight. Weight reduction should be considered before entering production.
  • Microbial Dynamics of a Fluidized Bed Bioreactor Treating Perchlorate in Groundwater

    Abstract: Optimization of operation and performance of the groundwater treatment system regarding perchlorate removal at Longhorn Army Ammunition Plant (LHAAP) is dependent on specific conditions within the reactor and the larger groundwater treatment process. This study evaluated the microbial community compositions within the plant during periods of adequate perchlorate degradation, sub-adequate perchlorate degradation, and non-operating conditions. Factors affecting the performance of the LHAAP ground water treatment system (GWTS) perchlorate de-grading fluidized bed reactor (FBR) are identified and discussed. Isolation of the FBR from naturally occurring microbial populations in the groundwater was the most significant factor reducing system effectiveness. The microbial population within the FBR is highly susceptible to system upsets, which leads to declining diversity within the reactor. As designed, the system operates for extended periods without the desired perchlorate removal without intervention such as a seed inoculant. A range of modifications and the operation of the system are identified to increase the effectiveness of perchlorate removal at LHAAP.
  • Informing the Community Engagement Framework for Natural and Nature-based Projects: An Annotated Review of Leading Stakeholder and Community Engagement Practices

    Abstract: In its infrastructure development work, the US Army Corps of Engineers (USACE) engages and collaborates with numerous local, state, and national stakeholders. Projects incorporating innovative approaches, such as beneficial use (BU) of dredged materials and other natural and nature-based features (NNBF), are often not well-understood by stakeholders, including those at the community level. This often results in conflicts and project delays. By sponsoring the development of a Community Engagement Framework, the Dredging Operations and Environmental Research (DOER) program hopes to systematically improve how project teams design, conduct, and measure effective community engagement on infrastructure projects. The purpose of this focused Review was to assesses leading stakeholder and community engagement practices that reflect the state of practice of stakeholder engagement within USACE, and by other leading organizations in the US and internationally, to inform development of the Community Engagement Framework. While the resulting Framework will be particularly well-suited for community engagement on projects incorporating BU and other NNBF, it will be applicable to a broad range of USACE Civil Works’ initiatives where effective stakeholder engagement is critical to project success. The assessment showed the practice of stakeholder engagement has evolved significantly over the past 30 years, with much more focus today on ensuring that engagement processes are purposeful, meaningful, collaborative, and inclusive - reflecting stakeholders’ desire to participate in co-creating sustainable solutions that produce environmental, economic, and social benefits. This, and other key findings, are informing development of the Community Engagement Framework which is scalable and adaptable to a broad range of projects across the USACE missions.
  • Is Mean Discharge Meaningless for Environmental Flow Management?

    PURPOSE: River ecosystems are highly dependent on and responsive to hydrologic variability over multiple time scales (e.g., hours, months, years). Fluctuating river flows present a key challenge to river managers, who must weigh competing demands for freshwater. Environmental flow recommendations and regulations seek to provide management targets balancing socio-economic outcomes with maintenance of ecological integrity. Often, flow management targets are based on average river conditions over temporal windows such as days, months, or years. Here, three case studies of hydrologic variability are presented at each time scale, which demonstrate the potential pitfalls of mean-based environmental flow criteria. Each case study shows that the intent of the environmental flow target is not met when hydrologic variability is considered. While mean discharge is inadequate as a single-minded flow management target, the consequences of mean flow prescriptions can be avoided in environmental flow recommendations. Based on these case studies, a temporal hierarchy of environmental flow thresholds is proposed (e.g., an instantaneous flow target coupled with daily and monthly averages), which would improve the efficacy of these regulations.
  • Ecological Model Development: Evaluation of System Quality

    PURPOSE: Ecological models are used throughout the US Army Corps of Engineers (USACE) to inform decisions related to ecosystem restoration, water operations, environmental impact assessment, environmental mitigation, and other topics. Ecological models are typically developed in phases of conceptualization, quantification, evaluation, application, and communication. Evaluation is a process for assessing the technical quality, reliability, and ecological basis of a model and includes techniques such as calibration, verification, validation, and review. In this technical note (TN), we describe an approach for evaluating system quality, which generally includes the computational integrity, numerical accuracy, and programming of a model or modeling system. Methods are presented for avoiding computational errors during development, detecting errors through model testing, and updating models based on review and use. A formal structure is proposed for model test plans and subsequently demonstrated for a hypothetical habitat suitability model. Overall, this TN provides ecological modeling practitioners with a rapid guide for evaluating system quality.
  • Standard Operating Procedures for Open-Air Solid Waste Burning in Contingency Locations

    Abstract: Service engineer doctrine and field manuals, such as Army Techniques Publication 3-34.40, Technical Manual 5-634, and Army Regulation 420-1, offer guidance on solid waste management but do not provide the level of detail and practical guidance for open-air burning of solid waste to reduce risk to the Warfighter. Studies have shown that there could be ill health effects to service members from exposure to toxins from open-air burning. Further practical guidance is necessary to ensure that if there are no other means available for solid waste disposal, the risks associated with open-air burning are minimized as much as possible during contingency operations. Commands have limited resources and reduced personnel available to study which open-air burning procedures are optimal based on readiness and mission requirements. Planning for efficiency and risk avoidance in open-air burning operations includes several facets (e.g., site planning, processing, and recordkeeping considerations). This special report provides operational guidance to minimize risk of open-air burning for the Warfighter and other joint service personnel, particularly when there is no other alternative to open-air burning, during initial phase operating a burn pit or for waste management planning to establish standard operating procedures.
  • waterquality for ArcGIS Pro Toolbox: User’s Guide

    Abstract: Monitoring water quality of small inland lakes and reservoirs is a critical component of the US Army Corps of Engineers (USACE) water quality management plans. However, limited resources for traditional field-based monitoring of numerous lakes and reservoirs covering vast geographic areas often leads to reactional responses to harmful algal bloom (HAB) outbreaks. Satellite remote sensing methodologies using HAB indicators is a good low-cost option to traditional methods and has been proven to maximize and complement current field-based approaches while providing a synoptic view of water quality (Beck et al. 2016; Beck et al. 2017; Beck et al. 2019; Johansen et al. 2019; Mishra et al. 2019; Stumpf and Tomlinson 2007; Wang et al. 2020; Xu et al. 2019; Reif 2011). To assist USACE water quality management, we developed an Environmental Systems Research Institute (ESRI) ArcGIS Pro desktop software toolbox (waterquality for ArcGIS Pro) founded on the design and research established in the waterquality R software package (Johansen et al. 2019; Johansen 2020). The toolbox enables the detection, monitoring, and quantification of HAB indicators (chlorophyll-a, phycocyanin, and turbidity) using Sentinel-2 satellite imagery. Four tools are available: (1) automating the download of Sentinel-2 Level-2A imagery, (2) creating stacked image with options for cloud and non-water features masks, (3) applying water quality algorithms to generate relative estimations of one to three water quality parameters (chlorophyll-a, phycocyanin, and turbidity), and (4) creating linear regression graphs and statistics comparing in situ data (from field-based water sampling) to relative estimation data. This document serves as a user’s guide for the waterquality for ArcGIS Pro toolbox and includes instructions on toolbox installation and descriptions of each tool’s inputs, outputs, and troubleshooting guidance.
  • Sediment Mobility, Closure Depth, and the Littoral System – Oregon and Washington Coast

    Abstract: Forty years ago, the depth of closure concept was introduced to provide a systematic, process-based approach to evaluate seasonal changes in cross-shore profiles and sediment mobility in the nearshore. This study aims to extend that theory by directly considering wave-asymmetry in the nearshore environment. This technical note introduces a methodology to calculate wave induced dispersal of dredged material placed in nearshore sites and summarizes analyses validating the approach using data from the South Jetty Site at the Mouth of the Columbia River. This investigation highlights the notion of a cross-shore gradient in nearshore placement effectiveness of dredged material that can assist project managers plan and execute sustainable sediment management practices at coastal inlets.