Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

  • Enhancing Resilience: Integrating Future Flood Modeling and Socio-Economic Analysis in the Face of Climate Change Impacts

    Abstract: As climate change intensifies, floods will become more severe in some areas with geographic variation, necessitating governments implementing systems providing information for climate adaptation. We aimed to develop a methodology identifying areas at an increased risk. In this study, 100-year recurrence interval flood extents and depths were estimated using an ensemble of six independent Coupled Model Intercomparison Project Phase 6 climate models for a past and future period under the highest-emissions climate scenario. The flood inundation results were related to social vulnerability for two study areas in the Mississippi River Basin. To identify at-risk areas, the relationship between the spatial distribution of flood depths and vulnerability was assessed. Finally, an analysis of current and future damages on infrastructure from flooding on residential housing to determine whether damages correlated with higher vulnerability areas. Results show flood extents and depths are increasing in the future, ranging from an increase of 6 to 76 km2 in extent. A statistically significant relationship between spatial clusters of flooding and of vulnerability was found. Overall, a framework was established to holistically understand the hydrologic and socioeconomic impacts of climate change, and a methodology was developed for allocating resources at the local scale.
  • Evaluation of Tekcrete Fast for Airfield Pavement Repairs

    Abstract: Tekcrete Fast is a deployable, high-strength cementitious product with rapid bonding force that was initially developed to provide stability for structures damaged by seismic activity and explosives. The product was evaluated by researchers at the US Army Engineer Research and Development Center for its ability to execute necessary force projection and resilient infrastructure repairs for the US military without major negative impacts to the mission. Full-scale testing of the rapidly emplaced calcium-sulfoaluminate (CSA) concrete product was completed to identify the sustainability and strength of the material with military aircraft traffic. The CSA concrete mixture was designed for dry-mix shotcrete applications and adapted to be placed conventionally (cast-in-place) using a portable skid steer concrete mixer. This report presents a technical evaluation of the field performance of full-depth concrete repairs conducted using the cast-in-place Tekcrete Fast material in a portable concrete mixer. Passes-to-failure rates for each repair were determined using an F-15E load cart. Results indicated that Tekcrete Fast meets the military’s criteria for being an expedient pavement repair solution.
  • Development of Innovative Cyanophage-Based Biotechnology for Harmful Cyanobacterial Blooms Mitigation: Interim Progress Report

    Abstract: Freshwater harmful cyanobacteria blooms (HCBs) are caused by toxin-producing cyanobacteria. Current efforts to prevent and mitigate HCBs include physical and chemical treatments, as well as manipulating the nutrient input and biological ecosystem of impacted water bodies. However, the development of remediation technologies lags behind the increasing frequency, prevalence, and severity of HCBs and their associated adverse health effects and socioeconomic losses. It is difficult to control the side effects of these remediation technologies due to their interactions with nontarget species, including microbes, plants, and animals. This project proposed the use of cyanophages, an abundant natural resource, to control HCBs in a target-specific manner. Here, the results of Year 1 of this effort are reported. Environmental field samples were collected, processed, and characterized morphologically and molecularly. Assays were refined for isolating and characterizing lytic environmental cyanophages. Cryopreservation methods were tested on pure cyanobacteria cultures, while well-characterized cyanophages were used to verify methods to retain infectivity for over 1 year. Methods to induce lysogenic phages to enter their lytic cycle were also explored. The goal was to develop a novel cyanophage-based biotechnology for HCBs mitigation by turning field-collected cyanophages into genetically modified (GM) or non-GM biocontrol agents to disrupt HCBs.
  • User Guidelines on Catchment Post-Wildfire Hydrological Modeling

    Abstract: Wildfires significantly alter watershed hydrology by increasing runoff due to reduced infiltration from soil-water repellency. To predict long-term wildfire impacts, a coupled framework was developed to simulate postfire changes in soil hydraulic properties, infiltration, and hydrological response. This framework integrates Wildfire-Induced Soil Hydraulic (WISH) Factors with a Soil-Moisture Threshold (SMT) formulation in the Green and Ampt infiltration model, representing reduced infiltration due to water repellency. Postfire inputs, including burn severity, soil type, and land use, are formatted for the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to ensure realistic hydrological simulations. The approach was applied to the 41.7 km² Upper Arroyo Seco watershed in northeast Los Angeles County, where 95% of the area was burned during the August 2009 Station Fire. Hydrological simulations effectively captured increased water repellency and excess runoff following postfire rainfall, demonstrating the model’s ability to represent wildfire-induced watershed changes and improve postfire hydrological assessments.
  • Enhanced Route Reconnaissance—Generation 1

    Abstract: The movement of soldiers and materiel across battlespace is critical to a successful military operation. Knowledge of the road network condition ensures safe and successful vehicle maneuver. This research focused on remote assessment of poor-quality paved road networks for vehicle maneuver using data products derived from three-dimensional point clouds. Point clouds were generated from lidar sensors deployed from ground and airborne platforms to enable engineering analysis of the pavement surface. A series of algorithms developed to extract roughness, grade, radius of curvature, and width along the road network ensured storage of information for graphical display. A vehicle speed lookup table was calculated by conducting computer simulations using the NATO Reference Mobility Model over a range of road parameters. The lookup table enabled determination of the maximum allowable speed for a given vehicle type associated with the extracted road parameters. A graphical interface, developed for displaying the percentage speed reduction as either red, amber, or green squares along the road network, provided visual assessments of road condition. This report summarizes developing a software suite to calculate and visualize speed reduction over a road network as a function of route geometry, condition, and vehicle type. The interface developed can aid in critical logistical decisions that influence the success of military maneuver operations.
  • Evaluation of Commercial Cementitious Rapid-Setting Materials and Testing Protocol for Repairing Airfield Spalls: Material Testing Results for 2023 and 2024

    Abstract: The Pavement Repair Material Certification Program assists the US Air Force Civil Engineer Center by executing independent testing on select proprietary commercial cementitious products used to repair partial-depth spalls in airfield concrete pavements. Selecting cementitious rapid-setting repair products can be difficult for military personnel because of the high number of commercially available products. Too often, product manufacturers highlight product strengths while masking undesirable properties. The purpose of this research was to evaluate selected commercially manufactured cementitious products through a series of laboratory testing protocols. These protocols were established to aid airfield managers and repair teams in selecting optimal airfield pavement spall repair materials by maintaining a database of permitted products. Under the program, approximately four to six repair products are tested annually. This report presents the laboratory test methods and results for cementitious rapid-setting repair products tested at the US Army Engineer Research and Development Center in 2023 and 2024. These test methods and results were evaluated for their ability to assess a material’s suitability for airfield spall repairs. No products were identified as compatible with partial-depth airfield pavement concrete spall repairs.
  • Chemo-Electrochemical Evolution of Cathode–Solid Electrolyte Interface in All-Solid-State Batteries

    Abstract: The stability of the interface between the cathode and the solid electrolyte (SE) has been found to be a key determinant of solid-state battery (SSB) performance. While interfacial failure from electro-chemical cycling has been studied, temperature effects on the chemical and electrochemical evolution of interface properties are not well-understood. We utilize a dense additive-free LiCoO2 cathode, which provides controlled morphology and crystallography, and well-known high voltage halide SEs (Li₃InCl₆ and Li₃YCl₆) to eliminate the need for cathode coating to explore the nature of interface deterioration induced by operating at up to 100 °C. By promoting temperature-induced accelerated interfacial failure, we show that at elevated temperatures (>60 °C) and higher states of charge, a significant chemo-electrochemical contribution to interfacial resistance results in rapid cell performance degradation. Our findings show that beyond the well sought-after SE electrochemical voltage stability, the atomic-scale restructuring of the cathode surface interfaced with the SE must be considered when designing stable interfaces.
  • A Bellwether for Microplastic in Wetland Catchments in the Great Lakes Region

    Abstract: This study is intended as a bellwether for the occurrence of microplastics (MPs) in Great Lakes wetlands. In 2020, sediment, surface water, and atmospheric deposition samples were collected from wetland catchments in or near five National Wildlife Refuges (NWRs) in the Great Lakes region: Horicon-WI, Seney-MI, Shiawassee-MI, Ottawa- OH, and Montezuma-NY. Sediment and surface water samples were taken from river, stream, and canal inflows and outflows to and from wetland areas. Atmospheric deposition samples were collected in carboys placed near established rain gauges. These sample sites were chosen as indicators of MP deposition into and out of the region’s wetland systems. MPs were extracted from each sample, enumerated, and categorized by particle morphology and polymer type. Average MP particle abundances in the sediment and surface water samples ranged from 344 to 538 particles kg⁻¹ (dry weight) and 2–68 particles m⁻³, respectively. Atmospheric MP deposition ranged from 5.8 to 22.6 particles m⁻² d⁻¹. Fibers were the most abundant MP particle type found in each sample type (sediment, surface water, and atmospheric deposition), followed by fragments. These results suggest that input and retention of MPs are pervasive in the Great Lakes region and surrounding wetland areas.
  • Prediction of Waterborne Freight Activity with Automatic Identification System Using Machine Learning

    Abstract: This paper addresses latency issues related to publicly available port-level commodity tonnage reports. Predicting commodity tonnage at the port-level, near real time vessel tracking data is used with historical WCS with a machine learning model. Commodity throughput is derived from WCS data which is released publicly approximately two years after collection. This latency presents a challenge for short-term planning and other operational uses. This study leverages near real time vessel tracking data from the AIS data set. LSTM, TCN, and TFT machine learning models are developed using the features extracted from AIS and the historical WCS data. The output of the model is the prediction of the quarterly volume of commodities at port terminals for four quarters in the future. Uncategorized and Categorized models were developed. The uncategorized outperformed the categorized based on the Mean Absolute Percentage Error. The uncategorized LSTM model has the highest accuracy. Results show the model has higher accuracy for port terminals that handle a specific type of vessel, compared to the port terminals handling more than one vessel type. The application of the model enables port authorities and stakeholders to make short-term capacity expansion and infrastructure investment decisions based on commodity volume.
  • Developing an Inventory of US Army Corps of Engineers’ Nature-Based Infrastructure Projects

    Abstract: The purpose of this report is to recommend a framework for developing a comprehensive database of US Army Corps of Engineers’ (USACE) natural infrastructure (NI) projects. Natural infrastructure is defined as an area or system that is naturally occurring, naturalized, or constructed to mimic naturally occurring features and then intentionally managed to enhance ecosystem value and provide social and economic benefits. Examples include river floodplains, setback levees, forested water supply watersheds, freshwater and coastal wetlands, living shorelines, dune and beach systems, living breakwaters, and reefs. NI is dynamic, with landscape-level interactions occurring among different features as well as in tandem with conventional infrastructure. Specifically, we identify the Engineering With Nature (EWN) ProMap database is identified as an attractive candidate for expansion. We also develop a tool for collecting project data that will improve data quality by standardizing information across projects, adopting an ecosystem services approach to cataloging project benefits, and incorporating social benefits metrics.