Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

  • PUBLICATION NOTICE: Understanding State-of-the-Art Material Classification through Deep Visualization

    Abstract: Neural networks (NNs) excel at solving several complex, non-linear problems in the area of supervised learning. A prominent application of these networks is image classification. Numerous improvements over the last few decades have improved the capability of these image classifiers. However, neural networks are still a black-box for solving image classification and other sophisticated tasks. A number of experiments conducted look into exactly how neural networks solve these complex problems. This paper dismantles the neural network solution, incorporating convolution layers, of a specific material classifier. Several techniques are utilized to investigate the solution to this problem. These techniques look at specifically which pixels contribute to the decision made by the NN as well as a look at each neuron’s contribution to the decision. The purpose of this investigation is to understand the decision-making process of the NN and to use this knowledge to suggest improvements to the material classification algorithm.
  • PUBLICATION NOTICE: Post-Project Monitoring of a Navigation Solution in a Dynamic Coastal Environment, Smith Island, Maryland: Year One of Post-Project Monitoring

    Abstract: In 2018, jetties and a sill were constructed by the US Army Corps of Engineers (USACE) adjacent to the Sheep Pen Gut Federal Channel at Rhodes Point, Smith Island, Maryland. These navigation improvements were constructed under Section 107 of the Continuing Authorities Program. Material dredged for construction of the navigation structures and realignment of the channel were used to restore degraded marsh. Following construction and dredging, 1 year of post-project monitoring was performed to evaluate the performance of navigation improvements with respect to the prevention of shoaling within the Sheep Pen Gut channel, shoreline changes, and impacts to submerged aquatic vegetation (SAV). Given the short period of record after the completion of the navigation improvements, it was difficult to draw conclusions regarding stability of the channel, structures, and shoreline. Therefore, this report documents methodology and baseline conditions for monitoring, except for SAV, which was found to be potentially impacted by construction. A second year of monitoring was funded by the USACE Regional Sediment Management Program for fiscal year 2020. Findings can be used to inform plan formulation and design for USACE navigation projects by illuminating considerations for placement of structures to prevent shoaling and by informing SAV management decisions.
  • PUBLICATION NOTICE: The Urban Ground-to-Ground Radio-Frequency Channel: Measurement and Modeling in the Ultrahigh Frequency Band

    ABSTRACT:  Ground-to-ground radio communication and sensing within the urban environment is challenging because line of sight between transmitter and receiver is rarely available. Therefore, radio links are often critically reliant on reflection and scattering from built structures. Little is known about the scattering strength of different buildings or whether such differences are important to the urban ground-to-ground channel. We tested the hypotheses that (1) diffuse scattering from built structures significantly impacts the urban channel and (2) scattering strength of urban structures varies with surface roughness and materials.  We tested these hypotheses by measuring urban channels in Concord, New Hampshire, and Boston, Massachusetts, and via channel-modeling efforts with three-dimensional representations of the urban environment. Direct comparison between measured and modeled channels suggest that both of these hypotheses are true. Further, it appears that ray-tracing approaches underestimate the complexity of urban channels because these approaches lack the physical processes to correctly assess the power incident on and scattered from built structures. We developed a radio-geospatial model that better accounts for incident power on both directly visible and occluded buildings and show that our model predictions com-pare more favorably with measured channels than those channels predicted via typical ray-tracing approaches.
  • PUBLICATION NOTICE: Army Installation Makerspaces in the Morale, Welfare, and Recreation (MWR) Operational Environment: A Business Case Analysis

    Abstract:  This work demonstrated the implementation of makerspaces, collaborative workspaces that provide hands-on learning to help prepare the future workforce with critical 21st century applied-technology skills. Researchers from the U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) enhanced and evaluated the pre-existing makerspace at Fort Bliss, Texas to demonstrate the value of a makerspace within the military Morale, Welfare, and Recreation (MWR) environment. The 8-month pilot demonstration, conducted from May to December 2018, focused on investigating program characteristics such as usage trends, optimal locations, equipment, and personnel access. Results from the demonstration indicated that enhanced makerspaces with high quality equipment had a positive Soldier impact. The business case analysis determined that the Fort Bliss Makerspace fits the criteria of, met the 15% cost-to-revenue ratio threshold for, and can operate successfully as, a Category Type A (Mission Sustaining) program asset.
  • PUBLICATION NOTICE: Development of Expedient Ultra-High Molecular Weight Aircraft Arresting System Panel Installation Procedures

    Abstract: The US Army Engineer Research and Development Center conducted an evaluation of different procedures to install ultra-high molecular weight polyethylene panels beneath pendant-based aircraft arresting systems (AAS). Currently employed techniques were modified or new techniques were developed to increase productivity and installation accuracy, aid in system constructability, and reduce logistical concerns when compared to AAS requirements and pavement repair guidance. Procedures for both asphalt concrete and portland cement concrete surfaced runway pavement were evaluated. The field evaluation was conducted from July to August 2013 at the Silver Flag Training Site, Tyndall Air Force Base, FL. The evaluation consisted of timing various procedures using a six- to eight-man installation crew. Equipment and supplies currently in Air Force inventories were preferred, but outside items were not prohibited if performance gains could be achieved and the new items were deployable using typical military cargo aircraft. Required work tasks were organized and grouped together to efficiently complete the panel installation work within multiple short-term runway closure windows without any long-term closures greater than 12 hours to allow for aircraft operations during the installation process. This report summarizes the timed field trials and the pertinent conclusions based on the results. Recommendations for implementation including additional equipment, supplies, and personnel needs are provided.
  • PUBLICATION NOTICE: Autonomous QUerying And PATHogen Threat Agent Sensor System (AQUA PATH): Monitoring Source Waters with Geospatially Wirelessly Networked Distributed Sensing Systems

    Abstract: Contaminants serve as health risks to recreational water, potable water, and marine life that result in undocumented effects on population exposure. In many areas of the world, the concern lies in contaminated drinking water, which would immediately effect social and economic order. As research advances for innovative solutions, the deployment of automated systems for source water monitoring could reduce the risk of exposure. Water quality monitoring typically involves sample collection and analyses that are performed in a laboratory setting. These results are normally presented after an 18−48 hr period. This report details the prototyped Autonomous QUerying And PATHogen threat agent sensor (AQUA PATH) geoenabled system that is able to detect the presence/absence of pathogenic bacteria indicators in source waters and report these values in the field, in less than 30 minutes. The AQUA PATH system establishes rapid field data collection and reports assessment of source waters bacterial loads at near shore inner coastal locations, which makes a leap forward compared to current presence/absence tests standards established by the EPA.
  • ERDC’s Cold Regions Research and Engineering Laboratory awarded construction contract for new climatic chamber facility

    On July 9, 2020, the U.S. Army Engineer Research and Development Center announced that the Cold Regions Research and Engineering Laboratory (CRREL) was awarded an Unspecified Minor Military Construction Authority (UMMCA) contract to build a climatic chamber facility on the Hanover, New Hampshire, campus.
  • PUBLICATION NOTICE: Erosion Thresholds and Rates for Sand-Mud Mixtures

    Abstract: Differences in erosion behavior of non-cohesive and cohesive sediments are widely recognized. In many natural environments, sand and mud are not completely separated and occur as mixtures. Significantly less research has been conducted on the erosion behavior of sand-mud mixtures compared to the separate treatment of sand and mud erosion. Sedflume erosion experiments were conducted on sand-mud mixtures with varying mud content to define the relationships between mud content, critical stress for erosion (τc), and erosion rate. Sand-mud mixtures were prepared with three mud sources: (1) non-swelling clay (kaolinite), (2) swelling clay (kaolinite/bentonite), and (3) a swelling, natural mud from the Mississippi River. Test results showed that critical shear stresses of the mixed sediments departed from that of pure sand with mud fractions on the order of 2% to 10%. Peak τc was observed between 30% to 40% mud content, with swelling muds achieving a ten-fold increase in τc while a five-fold increase in τc was measured for kaolinite. Additionally, this study demonstrated that the introduction of small amounts (≤5%) of mud to sand reduced erosion rates by a factor of 10 to 100. This observed abatement of erosion rate has implications for the use of dredged materials in civil and environmental engineering projects.
  • PUBLICATION NOTICE: Investigation of Shoaling in the Federal Navigation Channel, Waukegan Harbor, Illinois

    Abstract: Persistent and excessive shoaling occurs in the Outer Harbor and Approach Channel of the Waukegan Harbor, Illinois. This report describes a numerical modeling study performed for the US Army Corps of Engineers, Chicago District, to evaluate the existing harbor and 11 structural alternatives for three crest elevations. This report provides details of numerical modeling study, analysis of field data, and estimates of shoaling. The focus of the study is the investigation of a variety of structural solutions intercepting and/or diverting sediments to reduce shoaling in the navigation channel. These include breakwaters, groins, spurs, and structural extensions with varying length and crest elevation connecting to the north beach and existing north breakwater. Estimates of both shoaling volume and height are developed with and without project using an integrated wave-flow-sediment transport numerical modeling approach. Quantitative reduction estimates are provided for each structural alternative investigated.
  • PUBLICATION NOTICE: High-Performance Photocatalytic Degradation of Model Contaminants with Iron Oxide–Based Colloidal Solutions under Broad-Spectrum Illumination

    Abstract:  Small molecule contaminants, such as compounds from pharmaceuticals, personal care products, and pesticides, persist through traditional wastewater treatment processes. Heterogeneous photocatalysis with transition metal oxides (TMOs) is an emerging technology for removing these recalcitrant contaminants from wastewater. To leverage this technology, we selectively combined three different TMOs with bandgap energies in different regions of the solar spectrum as a means of harvesting multiple wavelengths of incident radiation to increase the degradation rate of model and real contaminants. Specifically, we combined zincite (ZnO, ultraviolet active), hematite (α-Fe2O3, visible active), and tenorite (CuO, near-infrared active). The combination of tenorite and hematite (2:1 mass ratio) was the most effective, degrading methyl orange with a rate constant of 40±1E-03 min−1. When applied to multicontaminant solutions using laboratory illumination, our multispectral photocatalyst degrades real-world contaminants, methyl orange, carbamazepine, and nitrobenzene, with rate constants of 30±1E-03, 24±1E-03, and 6±1E-03 min−1, respectively. In addition, the material degrades contaminants with a greater efficiency under outdoor solar illumination, with Collector Area per Order values of 4.0, 6.1 and 14.5 kWh/order/m³, for methyl orange, carbamazepine, and nitrobenzene, respectively. These results demonstrate the effectiveness of this approach to purify water for strategic applications.