Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: engineering
Clear
  • New capabilities in CREATE™-AV Helios Version 11

    Abstract: CREATE™-AV Helios is a high-fidelity coupled CFD/CSD infrastructure developed by the U.S. Dept. of Defense for aeromechanics predictions of rotorcraft. This paper discusses new capabilities added to Helios version 11.0. A new fast-running reduced order aerodynamics option called ROAM has been added to enable faster-turnaround analysis. ROAM is Cartesian-based, employing an actuator line model for the rotor and an immersed boundary model for the fuselage. No near-body grid generation is required and simulations are significantly faster through a combination of larger timesteps and reduced cost per step. ROAM calculations of the JVX tiltrotor configuration give a comparably accurate download prediction to traditional body-fitted calculations with Helios, at 50X less computational cost. The unsteady wake in ROAM is not as well resolved, but wake interactions may be a less critical issue for many design considerations. The second capability discussed is the addition of six-degree-of-freedom capability to model store separation. Helios calculations of a generic wing/store/pylon case with the new 6-DOF capability are found to match identically to calculations with CREATE™-AV Kestrel, a code which has been extensively validated for store separation calculations over the past decade.
  • In situ analysis and visualization to enable better workflows with CREATE-AV™ Helio

    Abstract: The CREATE-AV™ Helios CFD simulation code has been used to accurately predict rotorcraft performance under a variety of flight conditions. The Helios package contains a suite of tools that contain almost the entire set of functionality needed for a variety of workflows. These workflows include tools customized to properly specify many in situ analysis and visualization capabilities appropriate for rotorcraft analysis. In situ is the process of computing analysis and visualization information during a simulation run before data is saved to disk. In situ has been referred to with a variety of terms including co-processing, covisualization, coviz, etc. In this paper we describe the customization of the pre-processing GUI and corresponding development of the Helios solver code-base to effectively implement in situ analysis and visualization to reduce file IO and speed up workflows for CFD analysts. We showcase how the workflow enables the wide variety of Helios users to effectively work in post-processing tools they are already familiar with as opposed to forcing them to learn new tools in order post-process in situ data extracts being produced by Helios. These data extracts include various sources of information customized to Helios, such as knowledge about the near- and off-body grids, internal surface extracts with patch information, and volumetric extracts meant for fast post-processing of data. Additionally, we demonstrate how in situ can be used by workflow automation tools to help convey information to the user that would be much more difficult when using full data dumps.