Publication Notices

Notifications of New Publications Released by ERDC

Contact ERDC Library

 

erdclibrary@ask-a-librarian.info

601.501.7632 - text
601.634.2355 - voice

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: accelerated pavement testing
Clear
  • Naval Expeditionary Runway Construction Criteria: P-8 Poseidon Pavement Requirements

    Abstract: A full-scale airfield pavement test section was constructed and trafficked by the US Army Engineer Research and Development Center to determine minimum rigid and flexible pavement thickness requirements to support contingency operations of the P-8 Poseidon aircraft. Additionally, airfield damage repair solutions were tested to evaluate the compatibility of those solutions with the P-8 Poseidon. The test items consisted of various material thickness and strengths to yield a range of operations to failure allowing development of performance predictions at a relatively lower number of design operations than are considered in traditional sustainment pavement design scenarios. Test items were trafficked with a dual-wheel P-8 test gear on a heavy-vehicle simulator. Flexible pavement rutting, rigid pavement cracking and spalling, instrumentation response, and falling-weight deflectometer data were monitored at select traffic intervals. The results of the trafficking tests indicated that existing design predictions were generally overconservative. Thus, minimum pavement layer thickness recommendations were made to support a minimum level of contingency operations. The results of full-scale flexible pavement experiment were utilized to support an analytical modeling effort to extend flexible pavement thickness recommendations beyond those evaluated.
  • Full-Scale Evaluation of Multi-axial Geogrids in Road Applications

    Abstract: The U.S. Army Engineer Research and Development Center (ERDC) constructed a full-scale unsurfaced test section to evaluate the performance of two prototype geogrids, referred to as NX950 and NX750, in road applications. The test section consisted of a 10-in.-thick crushed aggregate surface layer placed over a very weak 2 California Bearing Ratio (CBR) clay subgrade. Simulated truck traffic was applied using one of ERDC’s specially designed load carts outfitted with a single-axle dual wheel truck gear. Rutting performance and instrumentation response data were monitored at multiple traffic intervals. It was found that the prototype geogrids improved rutting performance when compared to the unstabilized test item, and that the test item containing NX950 had the best rutting performance. Further, instrumentation response data indicated that the geogrids reduced measured pressure and deflection near the surface of the subgrade layer. Pressure response data in the aggregate layer suggested that the geogrids redistributed applied pressure higher in the aggregate layer, effectively changing the measured stress profile with an increase in pavement depth.
  • Evaluation of Thin Flexible Pavements under Simulated Aircraft Traffic

    Abstract: A full-scale airfield pavement test section was constructed and trafficked by the U.S. Army Engineer Research and Development Center (ERDC) to evaluate the performance of relatively thin airfield pavement structures. The test section consisted of 16 test items that included three asphalt pavement thicknesses and two different aggregate base courses. The test items were subjected to simulated aircraft traffic to evaluate their response and performance to realistic aircraft loads and to evaluate the effect of reductions in tire pressure on thin asphalt pavement. Rutting behavior, pavement cracking, instrumentation response, and falling weight deflectometer response were monitored at selected traffic intervals. The results of this study were used to extend existing Department of Defense pavement design and evaluation techniques to include the evaluation of airfield pavement sections that do not meet the current criteria for aggregate base quality and minimum asphalt concrete surface thickness. These performance data were used to develop new aggregate base failure design curves using existing stress-based design methodology.
  • Media Advisory: CRREL’s Heavy Vehicle Simulator departs Sept. 6 for Rowan University

    HANOVER, New Hampshire (Sept. 2, 2016) - The 51-ton, 75-foot, Heavy Vehicle Simulator (HVS Mark IV) at the U.S. Army Engineer Research and Development Center's Cold Regions Research and Engineering Laboratory is slated to depart the laboratory installation at 72 Lyme Road, Hanover New Hampshire Tuesday Sept. 6, 2016 at 9:00 a.m. (ET)