Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: stabilization
Clear
  • Naval Expeditionary Runway Reconstruction Criteria: Evaluation of Full-Depth Reclamation for P-8 Aircraft Operations

    Abstract: A structurally failed asphalt pavement section was reconstructed to investigate the full-depth reclamation (FDR) technique. The full-scale FDR pavement section consisted of six different test items containing different FDR material blends, a minimum asphalt layer thickness (i.e., 2 in. and 3 in.), and FDR-surface pavements (i.e., asphalt-surfaced and unpaved pavements). The FDR layers were stabilized with a combination of an asphalt emulsion and Portland cement. A heavy vehicle simulator was employed to simulate the loading conditions of the P-8 Poseidon aircraft. The performance of the full-scale pavement section before and after the FDR reconstruction was compared. The FDR technique was satisfactorily implemented to restore the structural capacity of a failed asphalt pavement. The pavements with FDR layers yielded at least two times more allowable passes than the conventional pavements. The FDR-surface pavement sections also demonstrated structural competency to support the expedient operation of heavy aircraft. The performance data generated from this project must be implemented to improve current practices in the design and evaluation of airfield asphalt pavements containing an FDR layer.
  • Joint Rapid Airfield Construction (JRAC) Program 2004 Demonstration Project--Fort Bragg, North Carolina

    Abstract: This report describes the demonstration of technologies and procedures developed during April 2002 and May 2004 under the Joint Rapid Airfield Construction (JRAC) Program. The demonstration took place at Sicily Landing Zone (LZ) at Fort Bragg, NC, in July of 2004. The objective of the exercise was to demonstrate the procedures and technologies developed under the JRAC Program by rapidly building two parking aprons capable of supporting C-130 transport aircraft taxiing and parking operations. The exercise was conducted under continuous 24-hr operations to simulate a real-world rapid construction environment. Apron 1 (north apron) was constructed using two technologies, one-half being ACE™ Matting and the other half being a cement-polymer stabilized soil surface. Apron 2 (south apron) was constructed solely of a fiber-cement-stabilized soil system. Both aprons were treated with a polymer emulsion surface application to form a sealed surface against abrasion and water infiltration. The entire construction of both aprons required 76 hr, with Apron 1 finished in 48 hr. The construction of Apron 1 was validated by operation of a C-130 aircraft approximately 31 hr after completion with success and high praises from the aircraft flight crew on the stability and surface of the apron, as well as its dust-abating characteristics.