Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: transportation
Clear
  • Full-Scale Demonstration of the Modernized Bridge Supplemental Set

    Abstract: The Overhead Cable System (OCS) serves as the main anchorage system of the Bridge Supplemental Set and is used to hold the Improved Ribbon Bridge (IRB) against river flow. Several improvements have been made to OCS components and employment procedures, theoretically allowing the OCS to operate safely within most environments. However, the modernized OCS had yet to be constructed over an actual river, making it necessary to conduct a full-scale capability demonstration. Range W2 of Camp Ripley was selected as the test site because the 200th Multi-Role Bridge Company agreed to support the demonstration during an ongoing training cycle. A site reconnaissance trip revealed environmental obstacles on each bank, which made the site a unique test for the modernized OCS. The OCS model, a software package developed to analyze the loading imposed by river drag force on the OCS, was used to design a unique layout that circumvents Camp Ripley’s environmental challenges. The OCS was successfully deployed over Camp Ripley’s wet gap flowing at a river speed of 3.5 ft/s, and the IRB supported vehicular traffic for 3 hr before safe disassembly. Several lessons were learned regarding system deployment, and data were collected to facilitate technical manual development.
  • Autonomous Transport Innovation (ATI): Integration of Autonomous Electric Vehicles into a Tactical Microgrid

    Abstract: The objective of the Autonomous Transport Innovation (ATI) technical research program is to investigate current gaps and challenges then develop solutions to integrate emerging electric transport vehicles, vehicle autonomy, vehicle-to-grid (V2G) charging and microgrid technologies with military legacy equipment. The ATI research area objectives are to: identify unique military requirements for autonomous transportation technologies; identify currently available technologies that can be adopted for military applications and validate the suitability of these technologies to close need gaps; identify research and operational tests for autonomous transport vehicles; investigate requirements for testing and demonstrating of bidirectional vehicle charging within a tactical environment; develop requirements for a sensored, living laboratory that will be used to assess the performance of autonomous innovations; and integrate open standards to promote interoperability and broad-platform compatibility. The research performed resulted in an approach to develop a sensored, living laboratory with operational testing capability to assess the safety, utility, interoperability, and resiliency of autonomous electric transport and V2G technologies in a tactical microgrid. The living laboratory will support research and assessment of emerging technologies and determine the prospect for implementation in defense transport operations and contingency base energy resilience.
  • Integration of Autonomous Electric Transport Vehicles into a Tactical Microgrid: Final Report

    Abstract: The objective of the Autonomous Transport Innovation (ATI) technical research program is to investigate current gaps and challenges and develop solutions to integrate emerging electric transport vehicles, vehicle autonomy, vehicle-to-grid (V2G) charging and microgrid technologies with military legacy equipment. The ATI research area objectives are to: identify unique military requirements for autonomous transportation technologies; identify currently available technologies that can be adopted for military applications and validate the suitability of these technologies to close need gaps; identify research and operational tests for autonomous transport vehicles; investigate requirements for testing and demonstrating of bidirectional-vehicle charging within a tactical environment; develop requirements for a sensored, living laboratory that will be used to assess the performance of autonomous innovations; and integrate open standards to promote interoperability and broad-platform compatibility. This final report summarizes the team’s research, which resulted in an approach to develop a sensored, living laboratory with operational testing capability to assess the safety, utility, interoperability, and resiliency of autonomous electric transport and V2G technologies in a tactical microgrid. The living laboratory will support research and assessment of emerging technologies and determine the prospect for implementation in defense transport operations and contingency base energy resilience.
  • Autonomous Vehicle Pilot at Joint Base Myer-Henderson Hall: Project Report Summary and Recommendations

    Abstract: Military installations serve as strategic staging areas that are integral to national security. The Army is currently reconsidering how it views its installations as part of the battle space under multi-domain operations, which includes technology modernization efforts, such as the rapidly expanding field of connected and autonomous vehicle (CAV) technology. The DoD community and military installations have an interest in investigating autonomous transportation systems to determine their potential role in a broad range of military applications. CAVs capture, store, and analyze tremendous amounts of data. Military installations need to understand the data systems and processes involved in CAV deployments. To that end, the Army is conducting pilot projects that deploy updated and commercially-available CAVs on installations and within adjacent com-munities to further demonstrate their use and conduct research and development to optimize and inform the integration of this emerging technology. This report documents the deployment of Autonomous Vehicle (AV) technologies at Joint Base Myer-Henderson Hall for a 90-day pilot study to evaluate a commercially-available AV.
  • PUBLICATION NOTICE: Improved Ribbon Bridge Structural Response Validation Testing

    Abstract: vehicles and trucks up to Military Load Capacity 96. The Bridge Supplemental Set (BSS) includes Bridge Erection Boats and an anchorage system to allow for the positioning and securing of the bridge in moving water. Designed to function as either a floating bridge or a raft, the IRB and BSS give military commanders multiple options with regards to the tactical river crossings. The US Army Engineer Research and Development Center (ERDC) was contracted by Product Manager Bridging to provide a structural analysis via high-fidelity numerical modeling of various IRB spans and water flow rates. To this end, a finite element model (FEM) of the IRB was constructed using field measurements of IRB interior bays. To ensure accurate structural response characteristics of the FEM and to build confidence in the simulation results, a validation test series was devised to generate empirical data to correlate against. This report documents the IRB structural response validation testing conducted at ERDC in March 2018. The data contained in this report was used to validate the IRB structural FEM.
  • PUBLICATION NOTICE: Structural Analysis of an Improved Ribbon Bridge Subjected to Hydrodynamic and Vehicular Loading

    Abstract: Structural modeling and simulations were performed to determine limit states of an Improved Ribbon Bridge (IRB) subjected to hydraulic and vehicle loadings. Measurements of as-built IRB bays were used to construct a three-dimensional, computer-aided design model. The model was used to create a computational finite element model (FEM) that was validated through correlations of simulation results and empirical data. The validated FEM was used to establish limit states (i.e., maximum current and vehicular loading conditions for 110 and 210 m IRB crossings). Analyses revealed that the primary structural failure mode was yielding in the steel pins that link IRB bays. Assuming the IRB is adequately restrained at the shores, a 110 m IRB can withstand currents up to 11 ft/s with no vehicle traffic; a 210 m IRB can endure up to 7 ft/s under the same conditions. For risk crossings, one Military Load Classification-70 vehicle on the bridge, 110 and 210 m IRBs can tolerate currents up to 9 and 7 ft/s, respectively. Under normal crossing conditions vehicle spaced 100 ft apart, a 110 m IRB has the structural capacity to endure currents up to 9 ft/s; the maximum current for a 210 m IRB is 5 ft/s.