Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Environmental Management
Clear
  • Applying the Ecosystem Goods and Services (EGS) Framework: Meramec Case Study

    Abstract: This technical report explores ecosystem goods and services (EGS) assessment to support US Army Corps of Engineers (USACE) decision-making by applying the recently published proposed EGS framework (Wainger et al. 2020) to a case study. A joint effort of the Environmental Protection Agency (EPA) and USACE, the Meramec River Basin Ecosystem Restoration Feasibility Study provides an opportunity to investigate the practicality of EGS analysis and how it might determine complementarity or antagonism among study partner goals. The EPA seeks primarily to protect human health, while USACE aims to restore aquatic ecosystems. Subjected to elevated heavy metals from upstream mining, altered hydrology, and other degrading factors, the river system nevertheless supports high aquatic biodiversity and numerous rare species. The project team developed an EGS conceptual model to document the potential ecological features and processes changes, ecological outcomes, and social benefits or harms of proposed management actions. Nonmonetary EGS benefit indicators illustrated concordance of the project goals with national restoration priorities. Overall, this initial analysis indicates that EGS analysis is feasible with the types of models and data available for the project, promotes explicit analysis of synergies and conflicts, and helps communicate effects and trade-offs during planning.
  • Incorporating Ecosystem Goods and Services (EGS) into US Army Corps of Engineers (USACE) Project Planning: A Retrospective Analysis

    Abstract: Ecosystem goods and services (EGS) have been promoted as a way to effectively examine trade-offs and improve communication of project-related environmental outcomes in terms of human well-being. Notably, EGS provide a construct that seems capable of enhancing the capacity to communicate with stakeholders about how ecosystem restoration and rehabilitation activities can affect them—and in ways that are more meaningful to the public than the habitat metrics currently employed. The concept of EGS is not new to the US Army Corps of Engineers (USACE) Civil Works Program. This document presents a review of past attempts to apply EGS assessment techniques in the context of USACE project planning and then identifies obstacles met in those efforts that could be avoided in the future. This report is not intended to showcase approaches to consider EGS in planning studies. Rather, this paper uses case studies to illustrate the challenges of considering ecosystem services in the context of planning studies. These challenges will need to be addressed in any future applications of EGS assessments to USACE Civil Works Program decision-making.
  • Improving Aquatic Placement Practices for Beneficial Use of Dredged Material in the Great Lakes

    Abstract: The Great Lakes Navigation System is an economically critical waterway. To maintain safe and navigable waterways, approximately 3–5 million yd3 (2.3–3.8 million m3) of sediments are dredged annually. The US Army Corps of Engineers (USACE) and others now recognize that beneficial use of these sediments can achieve positive economic, environmental, and social outcomes. However, historically less than 25% of dredged sediments have been beneficially used in the nearshore environment. Improvements are needed in dredged material management practices in the Great Lakes to achieve the goal of using 70% of dredged sediments beneficially by 2030. Therefore, to overcome these challenges this report reviews beneficial use of dredged material projects with the goal of improving and in-creasing beneficial-use-placement practices in the Great Lakes. Identified needs to advance beneficial-use placement in the Great Lakes include the following: (1) improved modeling of sediment-placement methods; (2) better documentation regarding the cost, benefits, and drawbacks of various placement methods; (3) demonstration of some sediment-placement techniques used successfully in other coastal environments; and (4) monitoring before and after conditions, particularly for sediments that contain greater than 10% fines. Several demonstration projects should be implemented to obtain information addressing the data gaps.
  • Pollinator Garden Playbook: Supporting the Western North American Population of Monarch Butterfly (Danaus plexippus) and the Endangered Smith’s Blue Butterfly (Euphilotes enoptes smithi) on Military Lands

    Abstract: The US Army Engineer Research and Development Center–Environmental Lab (ERDC-EL) researchers assisted the US Army Garrison Presidio of Monterey in 2021 to assess the feasibility of pollinator gardens at select locations in Monterey, California. The proposed pollinator gardens were to be designed to support the western population of the North American monarch butterfly (Danaus plexippus), the federally endangered Smith’s blue butterfly (Euphilotes enoptes smithi), and other pollinators found in the Monterey area. This technical report documents planning and design considerations for these pollinator gardens situated on the grounds of the Presidio of Monterey (POM) and the Ord Military Community (OMC). Site preparations, recommended plant species, garden designs, installation methods, and invasive species management are discussed. The contents herein can be used as a general playbook for similar pollinator habitat improvement projects on military lands.
  • Next-Generation Water Quality Monitoring during Dredging Operations: Knowns, Unknowns, and Path Forward

    Abstract: Water quality monitoring data are routinely collected during dredging and placement operations to address various state and federal requirements, including water quality standards, with the intention of protecting ecosystem health. However, such efforts may be limited by the lack of a standardized national strategic focus and user-friendly streamlined interfaces to interpret the data. Inconsistencies in how and what data are collected and lack of consensus on scientifically backed biological-effects thresholds make it difficult to quantify potential dredging operations impacts (or lack thereof) both within individual projects over time and across multiple projects of differing characteristics. Summarized herein is an initial effort to define a scientifically backed path forward to improve the value of current and future water quality monitoring and management decisions based on water quality data collected. The provided turbidity data were generally below applicable state thresholds for two case studies but for a third case study did periodically exceed thresholds at depth. This includes providing rationale for strategic focus on the most relevant dredging operations and projects, based on three general site-specific data categorizations: (1) sediment type, (2) dredge type, and (3) ecosystem type.
  • Reservoir Sediment Deltas of the Southwestern United States: Challenges and Opportunities for Riparian Vegetation Management

    Purpose: This technical note summarizes methods used to identify 58 reservoir sediment deltas in the Southwestern United States and California, behind 47 different dams, with potential regional importance as breeding or migratory stopover habitat for three species of riparian vegetation–dependent birds listed under the Endangered Species Act[1]: least Bell’s vireo (LBVI) (Vireo bellii pusillus), southwest willow flycatcher (SWFL) (Empidonax traillii extimus), and yellow-billed cuckoo (YBCU) (Coccyzus americanus). Information on inflow streams, drainage area, and management authority are provided for each delta. This technical note recommends follow-up research on the temporal dynamics of vegetation colonization, growth, and mortality on these deltas to explore the potential value of these geographically widespread hydrogeomorphic features on arid-land rivers for the conservation of riparian vegetation–dependent birds.
  • Engineering With Nature: An Atlas, Volume 3

    Abstract: Engineering With Nature: An Atlas, Volume 3 showcases EWN principles and practices “in action” through 58 projects from around the world. These exemplary projects demonstrate what it means to partner with nature to deliver engineering solutions with triple-win benefits. The collection of projects included were developed and constructed by a large number of government, private sector, nongovernmental organizations, and other organizations. Through the use of photographs and narrative descriptions, the EWN Atlas was developed to inspire interested readers and practitioners with the potential to engineer with nature.
  • Site Selection and Conceptual Designs for Beneficial Use of Dredged Material Sites for Habitat Creation in the Lower Columbia River

    Abstract: Channel maintenance in most major rivers throughout the United States requires ongoing dredging to maintain navigability. The US Army Corps of Engineers explores several options for placement based on sediment characteristics, material quantity, cost, operational constraints, and minimization of potential adverse effects to existing resources and habitat. It is a priority to beneficially reuse dredged sediments to create habitat and retain sediments within the river system whenever possible. Nonetheless, there can be discrepancies among state and federal resource agencies, landowners, tribes, and various other stakeholders about what constitutes a benefit and how those benefits are ultimately weighed against short- and long-term tradeoffs. This work leveraged prior Regional Sediment Management efforts building consensus among stakeholders on a suite of viable strategies for in-water placement in the lower Columbia River. The goal was to identify suitable locations for applying the various strategies to maximize habitat benefits and minimize potential adverse effects. A multistep site-selection matrix was developed with criteria accounting for existing site conditions, overall placement capacity, tradeoffs, long-term maintenance, cost, stakeholder concerns, and landscape principles in the context of other habitat restoration projects implemented in the lower river. Three highly ranked sites were selected for conceptual design and exemplify results of collaborative beneficial use implementation.
  • Monitoring Geomorphology to Inform Ecological Outcomes Downstream of Reservoirs Affected by Sediment Release

    Abstract: Increasingly, reservoir managers are seeking techniques that improve sediment management while considering long-term sedimentation and reduced operational flexibility. These techniques, often termed sustainable sediment management, involve passing sediment through reservoirs and into downstream rivers. Conceptually, restoring sediment continuity can benefit ecosystem function by increasing floodplain connectivity, contributing to the heterogeneity of channel geomorphology, and supporting the continuity of nutrient cycling. However, when a change is made to operations, geomorphic changes may need to be monitored to document benefits and mitigate any unexpected effects of the change. This investigation develops a geomorphic monitoring plan for downstream reaches affected by sediment-release operations at reservoirs. The monitoring objectives are aligned with potential geomorphic change caused by changes to sediment supply and the associated effects on river function. A tiered approach is presented to explain the quality of information that can be assessed from increasing levels of data collection. A general conceptual model is described in which geomorphic data may be linked to physical habitat conditions and, therefore, ecological processes. The geomorphic monitoring plan for the Tuttle Creek Reservoir water injection dredging (WID) pilot project is presented as a case study. This technical note establishes a general framework for monitoring the design for sustainable sediment management in different ecological and geomorphic contexts.
  • Evaluating Soil Conditions to Inform Upper Mississippi River Floodplain Restoration Projects

    Abstract: The US Army Corps of Engineers (USACE) has designed and constructed thousands of acres of ecosystem restoration features within the Upper Mississippi River System. Many of these projects incorporate island construction to restore geomorphic diversity and habitat, including floodplain forests. Soils are the foundation of the ecological function and successful establishment of floodplain forests as they are the basis through which plants obtain water and nutrients and provide critical ecosystem services. To improve floodplain forest island restoration outcomes, three natural and four recently (<10 years) constructed restoration sites were studied to compare soil physical, chemical, microbial, and fungal characteristics. Constructed islands had lower soil organic matter and dissolved organic carbon and differed in nutrient concentrations, bacterial assemblages, and fungal communities compared to reference sites. However, soil enzyme activity and some microbial community characteristics were functionally similar between the natural and created sites. Results align with previously established restoration trajectory theories where hydrological and basic microbial ecosystem functions are restored almost immediately, but complex biologically mediated and habitat functions require more time to establish. Data from this and future studies will help increase the long-term success of USACE floodplain forest restoration, improve island design, and help develop region-specific restoration trajectory curves to better anticipate the outcomes of floodplain forest creation projects.