Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Environmental Management
Clear
  • Review of Remote-Sensing Methods for Mapping Riparian and Submerged Aquatic Vegetation: Support for Ecosystem Restoration Monitoring and Flood Risk Management

    Abstract: Riparian vegetation, defined as multilayered herbaceous and woody plant communities along river margins or bank edges, and freshwater submerged aquatic vegetation (SAV), described as rooted aquatic plants in shallow rivers, lakes, and estuaries, are key factors influencing the connection between river and floodplain systems. These vegetation types are often used as indicators of riparian health. Current data on riparian vegetation and SAV are essential for addressing future water resource needs, particularly for restoration monitoring and flood risk management. The US Army Corps of Engineers (USACE), as the federal government’s largest water resources development and management agency, requires updated monitoring and assessment methods to support the development, utilization, and conservation of water and related resources. Assessing large riparian corridors involves characterizing baseline conditions, habitat extents, vegetation patterns, and health. Vegetation and habitat data are critical for evaluating the effects of project operations, resource management, and restoration outcomes downstream from USACE dams. However, obtaining such data across large, dynamic, and inaccessible river reaches is challenging. Integrating field-based techniques with remote-sensing technology offers opportunities to map larger areas comprehensively and adapt to future water resource needs. This report reviews re-mote sensing methods for mapping riparian and SAV habitats with emphasis on vegetation characteristics.
  • Developing an Ecosystem Goods and Services Assessment Framework: Products and Resources

    Purpose: The Environmental Research Area Review Group has long recognized a need to understand the role of Ecosystem Goods and Services (EGS) in US Army Corps of Engineers (USACE) civil works planning. An EGS Work Unit, funded by the Ecosystem Management and Restoration Research Program (EMRRP), has collaborated for more than a decade to develop many products and resources useful to USACE planners and policy makers. This technical note reviews the body of work produced by this large, diverse, and dedicated team.
  • Guidance for Managers of USACE Waterbodies: Deploying the ERDC CyanoSTUN™ for Suppression of Cyanobacterial Harmful Algal Blooms

    Purpose: The purpose of this document is to guide US Army Corps of Engineers (USACE) district personnel in using the US Army Engineer Research and Development Center’s (ERDC) CyanoSTUN™ (Cyanobacterial Suppression Through Ultraviolet-Light-C Neutralization) vessel for suppression of cyanobacterial harmful algal blooms (cyanoHABs). This document describes CyanoSTUN’s capabilities and components, intended operating conditions, and instructions for safe and effective operation of the vessel.
  • Review of Stream Assessments for Evaluating Ecological Impacts and Benefits

    Purpose: This technical note synthesizes common stream assessment methods and highlights their scope, data requirements, and ecological functions to assist practitioners and researchers in selecting appropriate tools for evaluating and managing stream ecosystem impacts and benefits.
  • Potential Benefits of Subaqueous Soil Data on Department of Defense Installations

    Purpose: Many domestic and international US Department of Defense (DoD) installations are located in coastal areas. Recent advances in the classification and mapping of subaqueous soils, which occur in shallow freshwater and marine environments, has the potential to benefit US military operations in several different ways. This technical note communicates the importance of subaqueous soil classification and describes how subaqueous soil information can inform the management of natural resources, infrastructure and transportation, mitigation of coastal storm risk, protection of the coast from natural threats, and the understanding of nearshore environments in the US and abroad.
  • Beneficial Use of Dredged Material for Submerged Aquatic Vegetation Habitats: Overcoming Challenges and Seeking New Opportunities

    Purpose: There is a critical need to maintain and create conditions that are conducive for long-term survival of submerged aquatic vegetation (SAV) habitats, which provide multiple ecosystem services, using dredged material. This technical note (TN) was developed by the US Army Engineer Research and Development Center (ERDC)–Environmental Laboratory (EL) to address the specific challenges US Army Corps of Engineers (USACE) practitioners at the district and division level face that impede the development of beneficial use of dredged material (BUDM) projects to restore, conserve, and expand SAV habitats. Different ways to overcome these challenges and opportunities that should be further explored are also addressed. The information in this TN was synthesized from discussions at a virtual workshop for USACE practitioners.
  • Mediated Model Development for Coastal Marsh Management in the Chesapeake Bay

    Purpose: The purpose of this technical note is to develop a conceptual model that describes the critical processes, stressors, and interactions that affect coastal marsh dynamics within the Chesapeake Bay, as identified by subject matter experts, and then link those factors to specific management actions. Managing coastal marshes within Chesapeake Bay involves multiple stakeholders across federal, state, local, and nongovernmental agencies. Reaching consensus among large stakeholder groups can be difficult, since each has their own perspective and requirements for management. Mediated modeling is a technique that facilitates consensus building among stakeholders and provides a transparent roadmap for decision-making. This technical note describes how mediated modeling was applied to marsh management in Chesapeake Bay. On 4–5 May 2022, The Nature Conservancy (TNC) and the US Army Engineer Research and Development Center (ERDC) Integrated Ecological Modeling Team (EcoMod) partnered for a multistakeholder mediated modeling workshop to (1) build a conceptual model that depicts the relevant processes impacting marsh dynamics, and (2) identify indicators that are necessary for tracking marsh conditions, which inform needed management strategies. This conceptual model provides the foundation for the development of a marsh management decision framework that will use indicators to identify marsh conditions that subsequently trigger management decisions.
  • Engineering With Nature: Natural Infrastructure for Mission Readiness at U.S. Navy and Marine Corps Installations

    Abstract: This book illustrates some of the current challenges and hazards experienced by military installations, and the content highlights activities at eight U.S. Navy and Marine Corps military installations to achieve increased resilience through natural infrastructure.
  • Applying the Ecosystem Goods and Services (EGS) Framework: Meramec Case Study

    Abstract: This technical report explores ecosystem goods and services (EGS) assessment to support US Army Corps of Engineers (USACE) decision-making by applying the recently published proposed EGS framework (Wainger et al. 2020) to a case study. A joint effort of the Environmental Protection Agency (EPA) and USACE, the Meramec River Basin Ecosystem Restoration Feasibility Study provides an opportunity to investigate the practicality of EGS analysis and how it might determine complementarity or antagonism among study partner goals. The EPA seeks primarily to protect human health, while USACE aims to restore aquatic ecosystems. Subjected to elevated heavy metals from upstream mining, altered hydrology, and other degrading factors, the river system nevertheless supports high aquatic biodiversity and numerous rare species. The project team developed an EGS conceptual model to document the potential ecological features and processes changes, ecological outcomes, and social benefits or harms of proposed management actions. Nonmonetary EGS benefit indicators illustrated concordance of the project goals with national restoration priorities. Overall, this initial analysis indicates that EGS analysis is feasible with the types of models and data available for the project, promotes explicit analysis of synergies and conflicts, and helps communicate effects and trade-offs during planning.
  • Incorporating Ecosystem Goods and Services (EGS) into US Army Corps of Engineers (USACE) Project Planning: A Retrospective Analysis

    Abstract: Ecosystem goods and services (EGS) have been promoted as a way to effectively examine trade-offs and improve communication of project-related environmental outcomes in terms of human well-being. Notably, EGS provide a construct that seems capable of enhancing the capacity to communicate with stakeholders about how ecosystem restoration and rehabilitation activities can affect them—and in ways that are more meaningful to the public than the habitat metrics currently employed. The concept of EGS is not new to the US Army Corps of Engineers (USACE) Civil Works Program. This document presents a review of past attempts to apply EGS assessment techniques in the context of USACE project planning and then identifies obstacles met in those efforts that could be avoided in the future. This report is not intended to showcase approaches to consider EGS in planning studies. Rather, this paper uses case studies to illustrate the challenges of considering ecosystem services in the context of planning studies. These challenges will need to be addressed in any future applications of EGS assessments to USACE Civil Works Program decision-making.