Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: asphalt
Clear
  • Unified Facilities Criteria and Unified Facilities Guide Specifications for Sustainable Military Construction : Concrete, Asphalt, Wood, and Life-Cycle Assessment Perspectives

    Abstract: Construction materials such as concrete, asphalt, and wood are essential components for Department of Defense (DoD) Military Construction (MILCON) and construction for contingency operations around the world. From housing facilities, to airfields, to magazines and hardened structures, each of these materials fulfill numerous Army building applications. However, greenhouse gas (GHG) emissions stemming from the manufacturing, application, maintenance, and disposal of concrete and steel exact a significant climate burden. Thus, due to their pervasive use and commodity status, the advancement of sustainable concrete, asphalt, and wood materials are a critical driver for GHG mitigation. This report communicates a first step toward decarbonization-focused updates to UFC and UFGS by outlining major specifications related to concrete, asphalt, and wood with near- and long-term strategies to facilitate modernization. The Engineer Research and Development Center (ERDC) is poised to make a significant impact on the identification and integration of sustainable materials to meet regulatory goals for the re-duction of GHG emissions in MILCON. New guidance will be integrated into UFC and UFGS by leveraging unique re-search, development, test, and evaluation (RDT&E) capabilities in materials science, life-cycle assessment, and federal relationships with discipline working groups
  • Laboratory Evaluation of Recycled Asphalt Pavement and Engineered Polymer Binder for Small Airfield Repairs

    Abstract: Conducting small asphalt repairs on airfields in remote locations can be technically and logistically challenging. An alternative to cold patch products is using an engineered polymer binder (EPB) mixed with recycled asphalt pavement (RAP). This paper presents the results of a laboratory evaluation of EPB with both wet and dry RAP. Compacted specimens were tested for rut resistance, indirect tensile strength (ITS), and Cantabro mass loss (ML). The results indicate that RAP mixed with EPB exhibited substantial rut resistance with ITS and ML similar to that of conventional dense-graded asphalt. Overall, the EPB and RAP blend appears to be a promising alternative for airfield repairs.
  • Evaluation of a Prototype Integrated Pavement Screed for Screeding Asphalt or Concrete Crater Repairs

    Abstract: Finishing, or screeding, the hot mix asphalt or rapid-setting concrete surface of a crater repair is important for rapid airfield damage recovery (RADR) since it determines the aircraft ride surface quality. The objective of RADR repairs is to expediently produce a flush repair, defined as ±0.75 in. of the surrounding pavement surface, with minimal logistical and personnel burden. Multiple screeds were previously evaluated; the most recent project proposed a prototype design of a telehandler-operated integrated screed for both small and large repairs using asphalt or concrete. This project’s objective was to finalize the prototype design and fabricate and test the prototype RADR screed. The prototype RADR screed was successful for small repairs (8.5×8.5 ft). Large repairs (30×30 ft) were generally successful with modest repair quality criteria (RQC) issues being the only notable deficiencies. Large concrete repair RQC issues were attributed to plastic formwork movement, and large asphalt repair RQC issues were attributed to compaction issues or improper roll-down factors. Methods to mitigate these factors were investigated but should be further evaluated. Overall, the RADR screed was successful from technical perspectives but, functionally, is 600-800 lb overweight. Weight reduction should be considered before entering production.
  • PUBLICATION NOTICE: Feasibility Investigation of Inductive Heating of Asphalt Repair Materials

    Abstract: Airfield pavement repairs conducted as part of rapid airfield damage recovery (RADR) activities must utilize suitable materials to reduce the need for subsequent repairs in order to maintain an operable pavement surface. For asphalt concrete pavements, hot mix asphalt (HMA) is typically used, but this requires a fairly large operation and is less practical for small repairs (e.g., small munitions damage, potholes). Instead, cold mix asphalt (CMA) is typically used for small repairs; however, its performance under aircraft loads is generally unacceptable.  The objective of this project was to investigate the feasibility of rapidly heating small-repair quantities (e.g., 5 gal buckets) of asphalt mix to hot mix temperatures in a matter of minutes. This objective was met using 15% steel aggregate by volume to produce an inductive HMA (iHMA) that could be heated from ambient to 320°F in approximately 5 min. This technology was demonstrated at full scale with a prototype field induction heater; iHMA patch repairs were subjected to simulated F-15E traffic and exhibited comparable rutting resistance to conventional HMA, which was considerably improved relative to CMA. Overall, iHMA was found to be a feasible repair material and should be considered for additional refinement and eventual implementation.