Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: climate change
  • Balancing Climate Resilience and Adaptation for Caribbean Small Island Developing States (SIDS): Building Institutional Capacity

    Abstract: Although the Caribbean's Small Island Developing States (SIDS) minimally contribute to global greenhouse gas emissions, they face disproportionate climate risks and are particularly susceptible to systemic economic threats posed by climate change and subsequent increases in climate variability. Historically, strategic programs and investments have sought to develop more robust and adaptive engineered systems to absorb climate threats. However, such initiatives are limited and under-resourced in the SIDS’ context. This article reviews existing climate strategies in the Caribbean and then critically examines current gaps and barriers relating to climate impact knowledge, needs, and implementation. This examination can assist Caribbean SIDS leadership to identify opportunities to transition from a vulnerability-reducing mindset to one of resilience and transformative adaptation to improve long-term economic outlooks, social welfare, and environmental stewardship despite recurring and escalating climate risks.
  • Challenges and Limitations of Using Autonomous Instrumentation for Measuring In Situ Soil Respiration in a Subarctic Boreal Forest in Alaska, USA

    Abstract: Subarctic and Arctic environments are sensitive to warming temperatures due to climate change. As soils warm, soil microorganisms break down carbon and release greenhouse gases such as methane (CH4) and carbon dioxide (CO2). Recent studies examining CO2 efflux note heterogeneity of microbial activity across the landscape. To better understand carbon dynamics, our team developed a predictive model, Dynamic Representation of Terrestrial Soil Predictions of Organisms’ Response to the Environment (DRTSPORE), to estimate CO2 efflux based on soil temperature and moisture estimates. The goal of this work was to acquire respiration rates from a boreal forest located near the town of Fairbanks, Alaska, and to provide in situ measurements for the future validation effort of the DRTSPORE model estimates of CO2 efflux in cold climates. Results show that soil temperature and seasonal soil thaw depth had the greatest impact on soil respiration. However, the instrumentation deployed significantly altered the soil temperature, moisture, and seasonal thaw depth at the survey site and very likely the soil respiration rates. These findings are important to better understand the challenges and limitations associated with the in situ data collection used for carbon efflux modeling and for estimating soil microbial activity in cold environments.