Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: military construction
Clear
  • Unified Facilities Criteria and Unified Facilities Guide Specifications for Sustainable Military Construction : Concrete, Asphalt, Wood, and Life-Cycle Assessment Perspectives

    Abstract: Construction materials such as concrete, asphalt, and wood are essential components for Department of Defense (DoD) Military Construction (MILCON) and construction for contingency operations around the world. From housing facilities, to airfields, to magazines and hardened structures, each of these materials fulfill numerous Army building applications. However, greenhouse gas (GHG) emissions stemming from the manufacturing, application, maintenance, and disposal of concrete and steel exact a significant climate burden. Thus, due to their pervasive use and commodity status, the advancement of sustainable concrete, asphalt, and wood materials are a critical driver for GHG mitigation. This report communicates a first step toward decarbonization-focused updates to UFC and UFGS by outlining major specifications related to concrete, asphalt, and wood with near- and long-term strategies to facilitate modernization. The Engineer Research and Development Center (ERDC) is poised to make a significant impact on the identification and integration of sustainable materials to meet regulatory goals for the re-duction of GHG emissions in MILCON. New guidance will be integrated into UFC and UFGS by leveraging unique re-search, development, test, and evaluation (RDT&E) capabilities in materials science, life-cycle assessment, and federal relationships with discipline working groups
  • Graphene in Cementitious Materials

    Abstract: This project aims to determine the influence of laboratory-generated graphene (LGG) and commercial-grade graphene (CGG) on the chemical structure and compressive strength of graphene-cement mixtures. Determining the graphene-cement structure/processing/property relationships provides the most useful information for attaining the highest compressive strength. Graphene dose and particle size, speed of mixing, and dispersant agent were found to have important roles in graphene dispersion by affecting the adhesion forces between calcium silicate hydrate (CSH) gels and graphene surfaces that result in the enhanced strength of cement-graphene mixtures. X-ray diffraction (XRD), Raman, and scanning electron microscope (SEM) analyses were used to determine chemical microstructure, and compression testing for mechanical properties characterization, respectively. Based on observed results both LGG and CGG graphene cement mixtures showed an increase in the compressive strength over 7-, 14-, and 28-day age curing periods. Preliminary dispersion studies were performed to determine the most effective surfactant for graphene dispersion. Future studies will continue to research graphene—cement mortar and graphene—concrete composites using the most feasible graphene materials. These studies will prove invaluable for military programs, warfighter support, climate change, and civil works.