Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Hydraulics--Computer simulation
Clear
  • A Monolithically Coupled Surface Water and Groundwater Finite Element Model with Fully Implicit Time Stepping Using Adaptive Hydraulics (AdH) v5.0 (KraRE: 21428 (ken)

    Abstract: Simulation of surface water and groundwater interaction is becoming increasingly important for the US Army Corps of Engineer Civil Works and Military Missions. This report details the formulation of a monolithic, coupled approach that combines the Richards equation for variably saturated groundwater flow and a diffusive wave approximation for overland flow. The model is implemented with USACE’s Adaptive Hydraulics (AdH) computational framework and is evaluated for several community benchmark problems. The results indicate that the AdH model is stable with performance similar to existing, well-established codes for surface water and groundwater interaction.
  • River Training Structure Design Study for Stabilization at Bonanza Bar

    Abstract: The Huntington District (LRH) has repeatedly dredged within the navigation channel at Ohio River Mile (RM) 353, adjacent to a location known as Bonanza Bar. An in-channel bar has developed from the placement of the dredged material along the left-descending bank where a bar was historically present. Recently, the frequency of dredging in this area has decreased, suggesting that the presence of the bar is providing some degree of channel constriction. LRH approached the US Army Engineer Research and Development Center to model possible river training structures to provide channel constriction and stabilize the placement of dredged material at Bonanza Bar. A two-dimensional hydraulic numerical model was developed to test structural alternatives by estimating the impacts on the velocities within the main channel, along the length of the bar, and along the mussel habitat within the side channel. Various rock dikes with bank protection were modeled and general design guidance and modeling results are presented. Modeling results indicate increases in main channel velocities and decreases in flow behind the structure for all modeled alternatives. Rootless dikes and bullnose chevrons provide adequate space and flow for side channel presence as opposed to the continuous and notched dikes.