Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Wind waves
Clear
  • Wave Information Study ERA5 Wind-Field Evaluation

    Abstract: The Wave Information Study (WIS) provides continuous wave hindcasts along US coastlines, including the Great Lakes and US Territories. As wave modeling and wind-field technologies have advanced, WIS is now positioned to transition to the new long-term archived hindcast wind fields available from ERA5, the fifth-generation global atmospheric reanalysis from the European Centre for Medium-Range Weather Forecasts. Before adopting ERA5 operationally within the WIS hindcast, formal testing compared ERA5 wind-forced hindcasts to the existing WIS hindcasts using Nation Center for Atmospheric Research Reanalysis 1 (NCAR-R1) winds. Results were validated against collocated and concurrent point-source and altimeter-based wave measurements from 2015 to 2018. ERA5 showed a 53% improvement in significant wave-height bias in the Atlantic and 76%–77% improvements in the Pacific. While improvements in average wave period were less consistent, ERA5 still showed better correlation across all domains. Hawaii showed modest improvements, except for bias. ERA5 also outperformed NCAR-R1 in mean wave direction at peak frequency, with bias reductions of 5%–72%, most notably in Hawaii, where wave modeling is typically challenging. Overall, it was concluded that the ERA5 forced WIS estimates were more accurate than the NCAR forced WIS estimates, supporting the operational transition of WIS to ERA5.
  • Development and Validation of NOAA’s 20-Year Global Wave Ensemble Reforecast

    Abstract: A 20-yr wave reforecast was generated based on the NOAA Global Ensemble Forecast System, version 12. It was produced using the same setup as the NCEP’s operational GEFSv12 wave component. The reforecast comprises five members with 1 cycle per day and a forecast range of 16 days. Once a week, it expands to 35 days and 11 members. This paper describes the development of the wave ensemble reforecast, focusing on validation against buoys and altimeters. The statistical analyses demonstrated very good performance in the short range for significant wave height, with correlation coefficients of 0.95–0.96 on day 1 and between 0.86 and 0.88 within week 1, along with bias close to zero. After day 10, correlation coefficients fall below 0.70. The degradation of predictability and the increase in scatter errors predominantly occur in the forecast lead time between days 4 and 10, in terms of the ensemble mean and individual members, including the control. For week 2 and beyond, a probabilistic spatiotemporal analysis of the ensemble space provides useful forecast guidance. Our results provide a framework for expanding the usefulness of wave ensemble data in operational forecasting applications.
  • Development of a Wave Model Component in the First Coupled Global Ensemble Forecast System at NOAA

    Abstract: We describe the development of the wave component in the first global-scale coupled operational forecast system using the Unified Forecasting System at NOAA, part of the U.S. National Weather Service operational forecasting suite. The operational implementation of the atmosphere–wave coupled Global Ensemble Forecast System, version 12, was a critical step in NOAA’s transition to the broader community-based UFS framework. GEFSv12 represents a significant advancement, extending forecast ranges and empowering the NWS to deliver advanced weather predictions with extended lead times for high-impact events. The integration of a coupled wave component with higher spatial and temporal resolution and optimized physics parameterizations enhanced forecast skill and predictability, particularly benefiting winter storm predictions of wave heights and peak wave periods. This endeavor encountered challenges addressed by the simultaneous development of new features that enhanced wave model forecast skill and product quality and facilitated by a team collaborating with NOAA’s operational forecasting centers. The GEFSv12 upgrade marks a pivotal shift in NOAA’s global forecasting capabilities, setting a new standard in wave prediction. We also describe the coupled GEFSv12-Wave component impacts on NOAA operational forecasts and ongoing experimental enhancements, which represent a substantial contribution to NOAA’s transition to the fully coupled UFS framework.