Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Advanced oxidation
Clear
  • Demonstration of Photocatalytic Degradation of Per- and Polyfluoroalkyl Substances (PFAS) in Landfill Leachate Using 3D Printed TiO2 Composite Tiles

    Abstract: Per- and polyfluoroalkyl substances (PFAS) are recalcitrant substances present globally in many landfill wastewater leachates and have potential ecological and human health risks. Conventional treatment technologies have shown limited efficacy for many PFAS due to the stable C–F bonds. Therefore, there is growing interest in applying advanced oxidation processes to decrease the aqueous concentrations in contaminated wastewater and mitigate risks. The goal of this study was to evaluate the photocatalytic performance of treating PFAS in landfill leachate using a novel photocatalyst composite. Treatment structures were fabricated using polylactic acid and compounded with TiO2, and 3D printed into tiles. A pilot-scale treatment system was designed to promote photocatalysis using 3D composite structures and UV irradiance intensity of 1.0 mW cm−2 following 24- and 36-h hydraulic retention times. Photocatalytic degradation was achieved for seven of the 11 PFAS evaluated in this study. Greater than 80% removal of PFOS, PFNA, PFDA, and PFOSAm was observed after 24 h of photocatalysis. These results indicate photocatalysis using TiO2 polymer composites can achieve beneficial levels of PFAS degradation. This study provides a proof-of-principle approach to inform the application of additive manufacturing of photocatalytic composites for use in the treatment of PFAS-contaminated wastewater.