Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Impact areas
Clear
  • Representation of Live-Fire Energetic Residues from Insensitive Mortar Munitions Using Command-Detonation Testing

    Abstract: Command detonation is critical for testing munitions early in the acquisition process, however its representation of energetic residues produced during live fire has not been assessed. Energetic residue deposition rates were measured on snow from live fire of 60 mm and 81 mm IMX-104 mortar munitions and then compared results with previous command-detonation tests of the same munitions. Mean live-fire deposition rates of IMX-104 compounds were: 3800 mg NTO, 34 mg DNAN, 12 mg RDX, and 1.9 mg HMX per 60 mm cartridge (n = 9); and 8000 mg NTO, 60 mg DNAN, 20 mg RDX, and 2 mg HMX per 81 mm cartridge (n = 13). The predominant residue compound NTO was accurately estimated by command detonation for the 60 mm munition but was significantly underestimated for the 81 mm munition. The minor residues of DNAN and RDX were relatively well estimated by command detonation for the 81 mm munition (p = 0.07 and p= 0.014, respectively), but both were significantly underestimated (p < 0.0001) for the 60 mm munition. Despite some of these differences, the ability demonstrated here for command detonation to predict live-fire residue deposition rates to the correct order-of-magnitude supports its utility in assessing environmental impact.
  • Particle Size Characteristics of Energetic Materials Distributed from Low-Order Functioning Mortar Munitions

    Abstract: Particles of explosive filler distributed from low-order (LO) munition functioning are susceptible to dissolution and potential mobilization into groundwater and surface water. We command-initiated three mortar munitions as LO in triplicate using a fuze simulator and recovered particles from an ice surface to constrain LO particle characteristics. Total explosive mass recovery (19–55%) and spatial distribution (0->20 m) varied significantly both between munitions and between replicate LOs of the same munition. The median particle size (0.27–3.99 mm) varied with total mass recovery. In general, LO particles coarsened, and total mass deposition rates decreased logarithmically, with increasing distance from the initiation point.