Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Interior Alaska (Alaska)
Clear
  • Assessing Heat Pump Technologies in Cold Regions for Army Installations

    Abstract: Air-source heat pumps (ASHPs) can efficiently provide building heating and cooling. To assess the performance of ASHPs in cold regions for the Army Installation Technology Transition Program, we installed an air-to-air minisplit ASHP in Fairbanks, Alaska. This Interior Alaska location is exposed to extreme cold. The appropriate size of the unit was determined using building size and air temperatures from the location. Using monitoring equipment, the heating performance of the unit was analyzed using measurements collected over the winter months. Finally, the coefficient of performance (COP) was calculated, and a thermal camera was used to assess the heating performance qualitatively. The ASHP effectively heated the building during the project, and ASHPs are therefore recommended for use in cold regions.
  • Phase I Geothermal Opportunities Assessment of the Delta Junction Area, Alaska

    Abstract: To enhance energy resilience at military installations in Interior Alaska, we are exploring geothermal energy, which harvests Earth’s heat to provide thermal energy, electricity, or both. Parts of Interior Alaska have high subsurface heat flow, likely related to high-heat-producing granites. While electric load is usually the focus of energy resilience; in cold regions, the thermal load dominates energy demand, and operations can be sensitive to it. A local geothermal energy source enhances energy resilience by providing baseload energy and lessening supply chain demand. Geothermal energy technology is mature and often economical, but resource location and assessment remain challenging. We present exploration methods for a geothermal feasibility study for Interior Alaska and Phase I prefeasibility study results assessing opportunities to develop geothermal at Fort Greely, Alaska. We present possible geothermal resource types, their potential uses, likelihood of existence, and development risk. We also present custom methodology for locating the resources, associated uncertainty, and the impact of finding each resource. Phase I shows geothermal at Fort Greely survives the elimination test. Investment into a Phase II field study to address knowledge gaps should consider the higher risk in comparison to other geothermal plays due to new methodology and sparse existing data.