Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Dredged material--Management
Clear
  • Beneficial Use of Contaminated Sediments: A Review of Technical, Policy, and Regulatory Needs

    Abstract: This special report summarizes key results from the March 2024 Sediment Management Working Group (SMWG) Contaminated Sediment Beneficial Use Workshop sponsored by US Army Engineer Research and Development Center’s (ERDC’s) Advanced Materials and Substances of Emerging Environmental Concern (AMSEEC) center, a multilaboratory research collaborative reviewing solutions to environmental challenges, and the Dredging Operations Environmental Research (DOER) Program, the navigational dredging research arm of ERDC. The workshop focused on potential avenues for treatment and management of contaminated sediments to support expanded beneficial use (BU) opportunities. AMSEEC, with support from DOER, sponsored four pilot studies to advance the technical aspects of the workshop program and partnered with the SMWG, an industry consortium, to organize the workshop in Washington, DC. The workshop was attended by more than 75 practitioners and relevant stakeholders to review these pilot studies and the challenges of advancing treatment and management of contaminated sediment to support BU. This special report summarizes and prioritizes technical, regulatory, and policy needs to enable expanded BU opportunities for contaminated sediments.
  • Northeast Florida Regional Sediment Management: A Guide to Using Dredged Material for Estuarine Restoration

    Abstract: Regional sediment management is a systems approach using best management practices for more efficient and effective use of sediments in coastal, estuarine, and inland environments. The primary RSM objective for this Northeast Florida study is to determine what opportunities exist to beneficially use dredged material for ecosystem restoration and habitat enhancement. A secondary objective is to ensure more efficient use of federal funds by coordinating dredging schedules for navigation projects with federal, state, and local authorities. This study met these objectives through collaboration with stakeholders on the technical, social, and cultural components required to combine resources to meet common goals. The Federal Standard for navigation projects in Northeast Florida is either upland disposal or disposal at the Jacksonville Ocean Dredged Material Disposal Site. This document describes five beneficial uses of dredged material: (1) thin-layer placement, (2) island creation and restoration, (3) dredged hole filling, (4) shoreline stabilization, and (5) upland beneficial use. Dredged material from navigation projects throughout Northeast Florida was considered, including Fernandina Harbor, Kings Bay Naval Submarine Base, Jacksonville Harbor, St. Augustine Inlet, Ponce De Leon Inlet, and the Atlantic Intracoastal Waterway. For each placement strategy, the document outlines the required sediments, volumes, construction methodologies, and estimated costs.
  • Understanding Hurdles to Expanded Beneficial Use of Dredged Sediment: Stakeholder Perspectives

    Purpose: This technical note (TN) is the second in a series of investigative reports seeking pathways and opportunities to expand beneficial use (BU) of dredged material (DM). This TN summarizes the results of stakeholder outreach and feedback on perceptions about potential BU barriers to be overcome. The purpose of the study was to aid the US Army Corps of Engineers (USACE) dredging and DM management practices, specifically BU of DM (hereinafter BUDM), that USACE manages from various navigation channels and ports around the nation. Per the 28 January 2023 Chief of Engineers’ Command Philosophy Notice, USACE is aiming to achieve a goal of 70% BU by the year 2030 (HQUSACE 2023), hereinafter the Chief’s 70/30 goal.
  • Numerical Modeling of Coastal Processes with Beneficial Use of Dredged Sediment in the Nearshore at Jekyll Island, Georgia

    Abstract: This report provides numerical model results to assist the US Army Corps of Engineers–Savannah District (SAS). These results evaluate beneficial use alternatives for the sediment from an advance maintenance widener of the Brunswick Harbor Entrance Channel between stations −14+000 and −28+000. This study applied a coastal wave, hydrodynamic and sediment transport model (Coastal Modeling System), and a shoreline change model (GenCade), focusing on developing and simulating placement alternatives. Subaerial placement model results indicate better shore and beach preservation than at the nearshore nourishment. Placing sediment closer to the “transition zone” between the revetment and natural beach will increase the volume of sand that remains in that area. Some sediment is predicted to return to the channel, but these volumes are small fractions of the placed material. GenCade results indicate that the transition zone rock debris decreases shoreline erosion. Removing it has less impact on that area than any of the subaerial nourishments, but this prediction does not include profile equilibration that may occur after the first 4 months. Overall, model results indicate that subaerial placement will have strong positive response at the eroding beach, and related increases to channel infilling rates are relatively small.
  • Norfolk Harbor Navigation Improvements Project: Modeling of Dredged Material Placement Schemes and Long-Term Sediment Transport at the Dam Neck Ocean Disposal Site

    Abstract: US Army Corps of Engineers–Norfolk District requested assistance with the development and evaluation of dredged-material-placement schemes that evenly distribute placed material and avoid or minimize unacceptable mounding in accordance with the site management and monitoring plan. A multiple placement fate and transport modeling study was conducted to determine the optimal placement plan for dredged material from Thimble Shoals Channel and Atlantic Ocean Channel at the Dam Neck Ocean Disposal Site (DNODS). Provided the large volume of dredged material to be placed at DNODS over a short duration during the construction period, a modeling study was performed using the Geophysical Scale Multi-Block (GSMB) modeling system to determine the transport and fate of placed dredged material at the DNODS that is resuspended by currents and waves over a 2-year period. Six scenarios were undertaken to determine the best path forward. Scenarios 1 and 4 were excluded due to high exceedance of the depth threshold. Scenarios 2, 3, 5, and 6 yielded an approximate 1%–2% dispersal of placed materials from the DNODS during ambient environmental conditions; Scenario 6 yielded the least. Most dispersion occurred during two simulated hurricanes. The model findings generally support the DNODS Environmental Impact Statement and site-designation documents.
  • Beneficial Use of Dredged Sediment in South St. Paul, Minnesota: 100 Years of Economic, Social, and Environmental Innovation

    Purpose: This technical note provides a review of beneficial use (BU) of dredged sediment in a 5-mile river reach of the Upper Mississippi River System (UMRS) that demonstrates the triple-win solutions championed by the US Army Corps of Engineers (USACE) Engineering With Nature® Program. Several case studies exemplifying the BU of dredged sediment are presented along with a more in-depth review of the Pigs Eye Lake Islands ecosystem restoration project.
  • Opportunities for Upper Mississippi River System Sand to Support Coastal Beach Nourishment

    Abstract: This research presents an opportunity to review the concept, status, and cost of using Upper Mississippi River (UMR) riverine dredged sand to nourish coastal beaches for increased resilience. Several dredged placement sites, transport modes, commercial and industrial uses, and end-point destinations will be identified in regional assessments and several specific UMR sediment to Great Lakes beneficial use projects will be reviewed here and assessed in greater detail during this research investigation.
  • Toward Systemic Beneficial use of Dredged Sediments in San Pablo Bay: Demonstration of a Proposed Framework for Matching Sediment Needs with Dredging Requirements

    Abstract: Coastal wetlands provide a suite of valuable ecosystem services, but they are rapidly disappearing due to reductions in sediment supply and rising sea levels, making them ideal candidates for restoration through beneficial use of dredged sediment. Because sediment dredged from navigation channels is a limited resource relative to the number of degraded wetlands, a framework has been developed to align coastal restoration sediment needs with dredging requirements to maximize social, environmental, and flood risk reduction benefits while also completing the navigation mission. The framework is comprised of four key steps: (1) geographic scoping and suitability considerations, (2) quantification of the dredged sediment available and restoration project sediment needs, (3) definition of cost and benefit objectives, and (4) optimization of costs and benefits to determine the most efficient solutions. This report is a demonstration of this framework on a subset of wetland sites and local federal navigation channels in San Pablo Bay, California.
  • Application of Existing Tools to Systematically Identify Nearshore Placement Sites for Beneficial Use of Navigation Sediments in Lake Michigan

    Purpose: The Great Lakes includes 140 federally maintained harbors with an annual dredging program of 2–4 million cubic meters (3–5 million cubic yards)[1] of sediment. Many small harbors are not dredged regularly, and there is an undredged backlog of over 9 million cubic meters (12 million cubic yards) of sediment (USACE-LRD 2021). Current policy (Spellmon 2023) is to maximize the beneficial use (BU) of sediment, with a goal of beneficially reusing 70% of the federal navigation dredging volume by 2030 (that is, the 70/30 goal). In the Great Lakes, clean sands have often been placed on beaches or in the nearshore littoral zone to beneficially nourish the shoreline, but since many harbors are not dredged regularly, no plans exist to beneficially reuse dredged sediments. This lack of existing BU plans is particularly true for harbors with finer grained or mixed sediment. To achieve the 70/30 BU goal and support navigation maintenance and coastal management requires a strategic and systematic approach to identifying BU sites. The purpose of the technical note is to (1) provide an approach to identify potential nearshore placement sites using existing information and models; (2) describe available tools for placement site identification, coastal condition information, and the long-term fate of the sediment; and (3) provide a pertinent case study to describe this approach in practice.
  • Beneficial Use of Dredged Material in the Atlantic Intracoastal Waterway: Approaching the Regulatory Process

    Purpose: Following the Chief of Engineer’s January 2023 goal to expand the beneficial use of dredged material (BUDM), the US Army Corps of Engineers (USACE) strives to apply new and creative ways to increase utilization of dredged materials from a historic 30%–40% to 70% by 2030. As USACE Savannah District (SAS) increases BUDM efforts, a critical component of this transition is understanding and navigating the regulatory requirements. This Technical Note outlines the regulatory process for placement of dredged material in Georgia, identifies challenges and institutional barriers, and offers potential solutions to streamlining the overall process. By increasing the ease of navigating the regulatory process, USACE can facilitate an increase in BUDM and Engineering with Nature® (EWN®) projects in Georgia, and potentially other projects employing nature-based solutions (NBS). While regulatory details may vary from state to state, the Georgia example presented here can serves as a road map for the general types of regulatory procedures and potential hurdles found nationwide.