Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Ocean circulation
Clear
  • Scaling and Sensitivity Analysis of Machine Learning Regression on Periodic Functions

    Abstract: In this report we document the scalability and sensitivity of machine learning (ML) regression on a periodic, highly oscillating, and 𝐶∞ function. This work is motivated by the need to use ML regression on periodic problems such as tidal propagation. In this work, TensorFlow is used to investigate the machine scalability of a periodic function from one to three dimensions. Wall clock times for each dimension were calculated for a range of layers, neurons, and learning rates to further investigate the sensitivity of the ML regression to these parameters. Lastly, the stochastic gradient descent and Adam optimizers wall clock timings and sensitivities were compared.