Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Locks (Hydraulic engineering)
Clear
  • Traveling Kevel Load Analysis for Inland Locks, Phase I: Previous Failures

    Abstract: The US Army Engineer Research and Development Center (ERDC) has begun an investigation of the load conditions experienced by a traveling kevel when moored to a moving barge train. These traveling kevel systems are essential for the safe and efficient use of the US Army Corps of Engineers (USACE) navigation lock inventory. This work is being conducted as part of the Navigation Systems Research Program of the Coastal and Hydraulics Laboratory (CHL). Recent failures of traveling kevels suggest that the existing design guidance for design loads for traveling kevels may need updating. This Coastal and Hydraulics Engineering Technical Note (CHETN) describes the pertinent background information and the current issues related to previous traveling kevel failures.
  • Lock and Dam 25, Upper Mississippi River Navigation Study: Ship-Simulation Results

    Abstract: The US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory (CHL), used the Ship/Tow Simulator to evaluate navigational conditions for the US Army Corps of Engineers, St. Louis District (MVS), proposed 1,200 feet (ft) lock chamber at Lock and Dam 25 in a tow simulation study. The study considers the impacts to navigation throughout construction sequences of the proposed 1,200 ft lock chamber and the final completed project. Testing occurred at CHL in October–November 2022 with five industry tow pilots. A total of 47 unique test conditions for a total of 187 ship-simulation exercises were evaluated. All final project simulations indicated that the design is feasible. When testing the construction scenarios of the design, it was evident that a tug assist boat would be necessary for entering the 600 ft lock for both approaches. Results found that the intermediate wall construction should begin at the existing structure and progress downstream. Entering the 600 ft lock from the pool side was additionally completed successfully; however, modifications are needed for entering from the tailwater side. Ultimately, the results of this study will aid MVS in the design plan and decision-making regarding the proposed lock.
  • DataSwitch Data Sweeper (DS)2

    Purpose: The purpose of this Coastal and Hydraulics Engineering technical note (CHETN) is to specify the software requirements, architecture, and detailed design for the DataSwitch Data Sweeper (DS)² application. This document is designed for the software developers maintaining (DS)² and is intended to aid these developers in understanding its architecture and underlying functionality.
  • Hands-Free Mooring for Inland USACE Locks, Phase I: Technical Screening

    Purpose: The US Army Corps of Engineers (USACE) Engineer Research and Development Center (ERDC) was asked to evaluate hands-free mooring (HFM) as an option for improving the safety and efficiency of lock operations at USACE locks within the United States. The focus of this research is assessing HFM solutions for barge tows on USACE inland waterway locks. This Coastal and Hydraulics engineering technical note (CHETN) describes the approach and findings from Phase I of this HFM research effort, which was funded through the Navigation Systems Research Program. Phase I includes defining the problem this research effort intends to address, understanding current mooring practices at USACE locks, gathering information on similar systems already in use, and developing design concepts and criteria.