Publication Notices

Notifications of New Publications Released by ERDC

Contact ERDC Library

601.501.7632 - text
601.634.2355 - voice


ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: dredging
  • Proceedings from the Basin Sediment Management for Unique Island Topography Workshop, Mayagüez, Puerto Rico

    Abstract: This report summarizes the Basin Sediment Management for Unique Island Topography Workshop hosted in-person and virtually at the University of Puerto Rico Mayagüez (UPRM) Department of Civil Engineering and Surveying, Mayagüez, Puerto Rico on 11 March 2022. The workshop was attended by approximately 80 federal, state, local, and academic organizations participants. It focused on Engineering With Nature® (EWN®), green infrastructure (GI) and low impact development (LID) opportunities for unique tropical island topography and included seven presentations from subject matter experts, a discussion on limitations and problems with prior projects, and two concurrent breakout sessions. Preworkshop activities included a field trip to multiple sites in the Añasco watershed conducted 09 March 2022, which served as a base case for the workshop. The field trip provided participants a unique perspective of the island’s topography and post 2017 Hurricane María issues and impacts. During the breakout sessions, participants identified new project opportunities for EWN®-GI and LID at two selected sites from the field trip. Each group developed alternatives for their chosen site and identified concepts that could turn into great opportunities for the surrounding communities and significantly benefit the state of practice in Puerto Rico’s unique tropical island topography.
  • Guidelines for How to Approach Thin-Layer Placement Projects

    Abstract: Historically, dredged material (DM) has been placed at the nearest available placement site. There has been an increasing trend of beneficial use projects recently, often using innovative methods. Thin-layer placement (TLP) involves one- to two-foot-thick DM placement, compared to traditional, thicker sediment placement applications, to restore coastal wetlands. The main idea of TLP is to promote the natural recolonization or reestablishment of habitat and benthic species. These guidelines present a roadmap of TLP’s evolution and offer easily digestible examples and considerations for TLP applications in wetlands and open-water environments. Offered as a tool to the practitioner, the eight chapters of these guidelines cover the history of TLP, characterization of the project area, setting goals and objectives, project design, construction considerations, monitoring and adaptive management, knowledge gaps, and future research needs. Several case studies are presented as examples of how such applications have been implemented and highlight lessons learned, particularly best-management practices. These guidelines offer consideration of TLP as a critical component in the project development phase, a tool for the sustainable management of DM, and a method that may create, maintain, enhance, or restore ecological function while supporting navigation channel infrastructure and providing flood risk management benefits.
  • Evaluation of Structural and Operational Alternatives to Optimize the Distribution of Water and Sediment in the Passes of the Mississippi River

    Abstract: Mississippi River shoaling and dredging processes in the vicinity of Head of Passes and in Southwest Pass were investigated. Existing rates of deposition and dredging were determined using near-daily eHydro bathymetric surveys, National Dredging Quality Management dredge operating data, and geospatial processing steps developed for this study. These surveys provide a means to characterize the highly dynamic and variable sedimentation patterns observed in the navigation channel. The HEC-6T one-dimensional numerical sedimentation model was used to evaluate possible modifications to the distribution of water and sediment in the Mississippi River near Head of Passes in an attempt to reduce shoaling in the navigation channel. The model was used to evaluate the effects of partial closures of several distributaries downstream from Venice and to evaluate the effects of channel widening and channel deepening adjacent to the Hopper Dredge Disposal Area at Head of Passes. In this study, various structural alternatives were compared to a base test that represented existing conditions. Sedimentation and dredging effects were projected 50 years into the future.
  • Advances in Dredged Material Evaluations for Inland and Ocean Aquatic Placement: Modernized Processes and Supportive Tools

    Abstract: As part of the US Army Corps of Engineers’ mission to evaluate and move dredged material (DM) to maintain navigation channels, environmental evaluation of the prospective material is required by the Code of Federal Regulations. While existing guidance manuals provide useful guidance to DM regulators, they are over 30 years old and not reflective of the latest science. However, efforts to update procedures and publish the documents individually or as a combined dredging manual have been thus far unsuccessful. These issues, coupled with a lack of consistent reporting and decision documentation, lead to delays arising from challenges addressing project-specific issues not clearly covered within the existing guidance, revisiting previously resolved issues or negotiating disputes between permitting authorities. This technical report provides a path toward modernization of the environmental compliance aspects of DM evaluation guidance in part through software executables guiding the management and decision process and through a structured, evidence-based approach. The value added is an updated approach to DM testing and evaluation decisions.
  • Swan Island Resilience Model Development; Phase I: Conceptual Model

    Abstract: This report documents the development of an integrated hydrodynamic and ecological model to test assumptions about island resilience. Swan Island, a 25-acre island in Chesapeake Bay, Maryland, was used as a case study. An interagency, interdisciplinary team of scientists and engineers came together in a series of workshops to develop a simplified resilience model to examine the ability of islands to reduce waves and erosion and the impacts to nearby habitats and shorelines. This report describes the model development process and the results from this first key step: model conceptualization. The final conceptual model identifies four main components: vegetative biomass, island elevation, waves/currents, and sediment supply. These components interact to form and support specific habitat types occurring on the island: coastal dunes, high marsh, low marsh, and submerged aquatic vegetation. The pre-and post-construction field data, coupled with hydrodynamic ecological models, will provide predictive capabilities of island resilience and evaluations of accrued benefits for future island creation and restoration projects. The process and methods described can be applied to island projects in a variety of regions and geographic scales.
  • A Review of Tidal Embayment Shoaling Mechanisms in the Context of Future Wetland Placement

    Abstract: Wetland construction in tidally influenced embayments is a strategy for beneficial use of sediment dredged from nearby navigation channels. These projects have the potential to alter basin morphology, tidal hydrodynamics, and shoaling trends. This special report provides a broad review of the literature related to engineering-induced changes in tidal range, salinity, tidal prism, tidal asymmetry, and other known causes of shoaling. Each potential shoaling mechanism is then evaluated in the context of wetland placement to provide a foundation for future beneficial use research. Based on a compilation of worldwide examples, wetland placement may reduce tidal amplitude and enhance ebb current dominance, thus reducing shoaling rates in the channels. However, constructed wetlands could also reduce the embayment’s tidal prism and cause accelerated shoaling relative to the pre-engineered rate. Because constructed wetlands are often created in conjunction with navigation channel dredging, the system’s morphologic response to wetland construction is likely to be superimposed upon its response to channel deepening, and the net effect may vary depending on a variety of system- specific parameters. Planning for future wetland placements should include an evaluation of local hydrodynamic behavior considering these factors to predict site-specific response.
  • Systematic Beneficial Use of Dredged Sediments: Matching Sediment Needs with Dredging Requirements

    PURPOSE: This technical note (TN) will outline a framework to identify beneficial and cost-effective coastal beneficial use of dredged sediment (BUDS) projects. Creation of a BUDS framework that can be applied at scale will promote sustainable BUDS practices, facilitating the delivery of flood risk management, social, and environmental benefits while still fulfilling the US Army Corps of Engineers (USACE) navigation mission. This proactive forecasting approach uses multi-criteria decision analysis (MCDA) and optimization tools to balance tradeoffs between navigation dredging and BUDS goals over project-scale timespans. The proposed framework utilizes available tools to quantify ecological system evolution and current and future dredging needs to develop a systems-level approach to BUDS. Required data include current and future information on (1) existing and planned natural and created aquatic ecological systems, which may include natural and nature-based features (NNBFs), (2) dredging requirements and costs, and (3) aquatic system physical and environmental data.
  • Application of Clean Dredged Material to Facilitate Contaminated Sediment Source Control

    Abstract: Navigation channels, turning basins, and other US Army Corps of Engineers (USACE)–managed navigation infrastructure often serve as repositories for contaminated sediment from off-site sources. As much as 10% of the material that USACE dredges on an annual basis is contaminated such that it requires additional and more costly management (for example, rehandling and placement in managed confined disposal facilities). Presence of contaminated sediments constrain potential management options resulting in additional costs and opportunity loss from the inability to beneficially use the material. One potential solution is applying clean dredged material to stabilize and isolate contaminated sediment sources, preventing further transport and introduction to USACE-managed infrastructure. This document summarizes a comprehensive literature review of laboratory and field case studies relevant to using clean dredged material to isolate or stabilize contaminated sediments, focusing on the physical, chemical, and biological parameters critical to establishing its feasibility and long-term effectiveness. Potentially effective engineering control measures were also reviewed where erosion and site hydrodynamics are facilitating the transport of contaminated sediments to USACE-maintained navigation infrastructure. This literature review documents and summarizes those factors considered in establishing feasibility and long-term effectiveness of the approach as well as the applicable engineering tools employed and constraints encountered.
  • Current State of Practice of Nearshore Nourishment by the United States Army Corps of Engineers

    Abstract: This US Army Corps of Engineers (USACE) special report prepared by the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, provides an overview of the current state of practice for nearshore nourishment with dredged sediment. This special report was completed with responses and input from professionals across the dredging and placement teams from each of the USACE Coastal and Great Lakes districts, providing comprehensive overviews of the decision trees these districts utilize in the placement of their dredged sediment. This report describes the general practice of nearshore nourishment, the impediments and concerns faced by nearshore nourishment projects, and the practical methods utilized by the Coastal and Great Lakes districts for their nearshore nourishment projects. Understanding the current state of practice, along with the general and specific impediments the districts face, enables further research in and development of best practices for use across the USACE and better communication of the practice to other stakeholders.
  • Screening Dredged Material to Meet Placement Requirements

    Abstract: Certain types of dredging projects require screening of the dredged material (DM) to achieve the project’s DM placement requirement(s). Screening in the context of this report will be defined as the separation of an oversized fraction of the DM from the remaining fraction to meet project-specific placement compliance criteria (or criterion). Examples of DM placement requirements include aspects such as removing Munitions and Explosives of Concern (MEC) to address safety concerns and extracting over-sized material for beneficial use of DM (e.g., gravel and debris from sand to meet beach nourishment placement standards). Welp et al. (2008) provide detailed guidance for personnel involved in dredging projects with sediment containing MEC. The purpose of this document is to not only update the previous MEC-centric guidance with newly developed or identified technology but to also expand upon screening aspects to provide guidance for personnel involved in dredging projects that require removal of an oversized fraction for screening purposes other than just MEC removal.