Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: waterways
Clear
  • Hydraulic Evaluation of the Proposed Brandon Road Lock Flushing System

    Abstract: The Great Lakes Mississippi River Interbasin Study is a US Army Corps of Engineers effort focused on stopping the migration of aquatic nuisance species (ANS) from the Mississippi River to the Great Lakes. Brandon Road Lock and Dam (BRLD) has been chosen as the location to stop this northward migration. The study described in this report focuses on the performance of a proposed lock flushing system intended to reduce the risk of ANS from passing northward through BRLD. This system is a modification of the existing filling/emptying (F/E) system and must perform as both a lock flushing system and the F/E system. This study focuses on determining the performance of the flushing system and the F/E system to establish flushing and F/E operating parameters for safe lock operation. The results presented include qualitative descriptions and quantitative measurements of the flushing and F/E systems’ hydraulic performance. Finally, this study investigates commercial barge tows entering and exiting the lock chamber to determine the effects such barge tow movement has on both the barge tow and the vessel-generated currents. This report provides recommendations for flushing system and F/E system operation and commercial barge traffic considerations during flushing.
  • Quality Control for Waterway Networks: Processing Algorithm and GIS Toolbox

    Purpose: This Coastal and Hydraulics Engineering technical note (CHETN) documents the development of a US centered Geographic Information System (GIS) representation of navigable waterways for research purposes, including connections with the US Army Corps of Engineers (USACE) National Channel Framework (NCF) reaches, depths, and international connections, and the “Quality Control for Waterway Networks” processing algorithm. The algorithm is an automated method to update a waterway network created by the Coastal and Hydraulics Laboratory (CHL). After a user introduces desired changes to an input line layer representing waterways, the algorithm outputs links and nodes’ shapefiles containing a fully connected network, with geometries and depths aligned with the NCF, and controls for topology and attributes quality. In addition, spatial joins assign attributes to network nodes from other various sources of data. The product of this work is a GIS waterway network, along with a Quality Assurance and Quality Control (QAQC) script incorporated via toolbox within an open-source GIS software to maintain the waterway network updated. The algorithm has the capacity to be adapted to other transportation network needs or GIS software packages.
  • Parameterized Statistical Distributions of Unique Origin-Destination Pairs for Major Waterborne Commodity Groups

    Abstract: Modeling the spatiotemporal aspects of freight movements within a distributed network is crucial to forecasting transportation infrastructure needs, prioritizing investments, and estimating emissions. Commodity flow patterns and trends along the inland waterway transportation system are significant because of their importance for the economy, in line with priorities of the US Committee on the Marine Transportation System. Analyzing these inland waterway flows better informs multimodal freight transportation modeling. This exploratory research uncovers, describes, and summarizes patterns and trends of the US waterway transportation system by mining waterborne freight data. The purpose of this work is to identify parameterized statistical distributions that describe the relative dispersion of unique waterborne Origin-Destination (OD) pairs when sorted high to low by annual freight tonnage. Best-fit statistical distributions and associated parameters are identified for the leading commodities transported on waterways, and an 11-year time-series analysis of commodity-specific distribution parameters provide their evolution across time. Results show that the power law best explains the distribution of ranked ODs by tonnage for seven of the twelve commodities analyzed. The root-mean-square error (RMSE) of any given commodity modeled is less than 1%. These results provide insights into the underlying behavior of inland waterway freight transportation.
  • Waterway Engineering Applications of Automatic Identification System Data along the Mississippi River and at Lock Structures

    Abstract: The USACE, St. Louis District, is responsible for maintaining navigation channels along with multiple lock and dam structures on the Mississippi River, a vital inland waterway that carries millions of tons of commodities every year. Understanding commercial vessel traffic patterns is fundamental to informing decisions about construction projects and to efforts to improve communication to mariners. Automatic Identification System (AIS) data provides time-stamped and geo-referenced vessel position reports for most commercial vessels operating in the District’s area of interest. This paper describes how AIS data has been successfully used by St. Louis District waterway managers to (1) prevent conflicts with the navigation industry by revealing active fleeting areas that were under consideration for the construction of river training structures; and (2) identify changes in vessel approaches to a lock structure under different river flow conditions, providing operational information that could be used in future navigation alerts to mariners. This paper concludes with a list of suggested best practices for waterways managers who want to start, or expand, their use of AIS data.
  • An Examination of Multihazard Marine Transportation System (MTS) Response and Recovery Operations during the 2020 Hurricane Season

    Abstract: The Committee on the Marine Transportation System (CMTS), Resilience Integrated Action Team (RIAT), was established in 2014 to foster the coordination and coproduction of knowledge that incorporates the concepts of resilience into the marine transportation system (MTS). The RIAT defines resilience as a four-phase cycle that incorporates preparation, response, recovery, and adaptation activities to minimize disruption to the MTS. The RIAT utilizes this definition of resilience to convene first-responder CMTS agencies to examine challenges and successes and make recommendations about past hurricane seasons. The 2020 hurricane season saw a record-breaking number of storms form in the Atlantic basin during a global pandemic. As a result, federal agencies were challenged to operate in a multihazard posture, and many former lessons learned needed to be adjusted to this unprecedented situation.
  • Marine Bioinvasion Risk: Review of Current Ecological Models

    Abstract: This special report describes the first phase of developing an ecological model to inform marine bioinvasion risks in the United States. The project responds to the needs of the US Army Corps of Engineers (USACE) Aquatic Nuisance Species Research Program, or ANSRP, which addresses all problematic invasive aquatic species affecting the nation’s waterways, infrastructure, and associated resources, and the needs of the USACE navigation and dredging programs. Multiple port-deepening studies are either in progress or under consideration, and all must address ecological risk. Understanding whether and how increased dredging contributes to in-creased marine bioinvasion risk allows risk mitigation during early planning phases. Considering the potential impacts of future environmental change, such as changing sea level, ocean temperature, and ocean chemistry, will further strengthen planning for marine bioinvasion risk. There-fore, this special report documents current ecological modeling approaches to marine bioinvasion risk models and identifies models that in-corporate shipping as a vector. The special report then presents a conceptual model and identifies historic vessel position data from the Automatic Identification System, or AIS, now available for most commercial and some recreational vessels around the United States, as a key source for future model development and testing.
  • Automatic Identification System (AIS) Data Case Study: Identifying Unofficial Mooring Areas along the Upper Mississippi River

    Purpose: This Dredging Operations and Technical Support (DOTS) program technical note presents the results of a study undertaken at the request of staff from the US Army Corps of Engineers (USACE) Rock Island District (MVR) as part of a larger effort examining the potential creation of seven new permanent mooring cells along the Upper Mississippi River in proximity to lock and dam (LD) locations selected by MVR. MVR staff were interested in evaluating vessel traffic and identifying unofficial mooring areas (i.e., waiting areas) in the vicinity of LD7, LD10, LD11, LD14, LD15, LD20, and LD22; they were also interested in travel times from those unofficial mooring areas to the destination lock. The search distance for unofficial mooring areas was limited to 20 miles from the lock, or the distance to the next closest lock if less than 20 miles, in the appropriate direction (i.e., upstream or downstream), as specified by MVR staff.
  • Automatic Identification System (AIS) Data Case Study: Vessel Traffic through the Yaquina Bay Breakwater at Newport, Oregon

    Abstract: The navigation staff at US Army Corps of Engineers (USACE) Portland District (NWP) asked for information on vessel transits through the two existing openings in the breakwater on the north side of Yaquina Bay in Newport, Oregon. Currently, no authorized federal channel passes through the breakwater openings; however, the design for a possible federal channel is under consideration. NWP staff were interested in historical vessel transits, with a special focus on isolating transits for the largest (i.e., longest) vessels, identified as vessels 80 feet or longer, currently utilizing the area inside the breakwater. The Automatic Identification System Analysis Package (AISAP) software created by USACE-ERDC (2018) was used to analyze vessel traffic.
  • AIS Data: An Overview of Free Sources

    Abstract: The purpose of this Coastal and Hydraulics Engineering technical note (CHETN) is to describe the sources of Automatic Identification System (AIS) data available to the public, with a focus on federal employees who may need AIS data to carry out their official duties. AIS data, in this context, refer to both real-time and historic vessel position information.
  • 2017 Hurricane Season: Recommendations for a Resilient Path Forward for the Marine Transportation System

    Abstract: In October 2017, the Coordinating Board of the US Committee on the Marine Transportation System (MTS) tasked the MTS Resilience Integrated Action Team (RIAT) to identify the impacts, best practices, and lessons learned by federal agencies during the 2017 hurricane season. The RIAT studied the resiliency of the MTS by targeting its ability to prepare, respond, recover, and adapt to and from disruptions by turning to the collective knowledge of its members. Utilizing interagency data calls and a targeted workshop, the RIAT gauged the disruptive effect of the 2017 hurricane season and how Hurricanes Harvey, Irma, and Maria affected the operating status of at least 45 US ports across three major regions. This report identifies recommendations to better understand how the MTS can prepare for future storms and identifies activities by federal agencies that are contributing towards resilience. Such actions include hosting early pre-storm preparedness meetings, prioritizing communication between agencies and information distribution, and maintaining or updating existing response plans. Recommendations also target challenges experienced such as telecommunication and prioritization assistance to ports and critical infrastructure. Finally, the report offers opportunities to minimize the impacts experienced from storms and other disruptions to enhance the resilience of the MTS and supporting infrastructure.