Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: uranium
  • PUBLICATION NOTICE: Electrokinetic-Enhanced Phytoremediation of Uranium-contaminated Soil Using Sunflower and Indian Mustard

    Abstract: Electrokinetic-enhanced phytoremediation is an effective technology to decontaminate heavy metal contaminated soil. In this study, we examined the effects of electrokinetic treatments on plant uptake and bioaccumulation of U from soils with various U sources. Redistribution of uranium in soils as affected by planting and electrokinetic treatments was investigated. The soil was spiked with 100mg kg⁻¹ UO₂, UO3, and UO₂(NO₃)₂. After sunflower and Indian mustard grew for 60 days, 1 voltage of direct-current was applied across the soils for 9 days. The results indicated that U uptake in both plants were significantly enhanced by electrokinetic treatments from soil with UO₃ and UO₂(NO₃)₂. U was more accumulated in roots than in shoots. Electrokinetic treatments were effective on lowering soil pH near the anode region. Overall, uranium (U) removal efficiency reached 3.4–4.3% from soils with UO₃ and uranyl with both plants while that from soil with UO₂ was 0.7–0.8%. Electrokinetic remediation treatment significantly enhanced the U removal efficiency (5–6%) from soils with UO₃ and uranyl but it was 0.8–1.3% from soil with UO₂, indicating significant effects of U species and electrokinetic enhancement on U bioaccumulation. This study implies the potential feasibility of electrokinetic-enhanced phytoremediation of U soils with sunflower and Indian mustard.
  • PUBLICATION NOTICE: A Novel Laboratory Simulation System to Uncover the Mechanisms of Uranium Upward Transport in a Desert Landscape

    Abstract: After depleted uranium (DU) is deposited in the environment, it corrodes producing mobile uranium species. The upward transport mechanism in a desert landscape is associated with the dissolution/precipitation of uranium minerals that vary in composition and solubility in soil pore water. The objective of this study is to develop the laboratory column simulation to investigate the upward transport mechanism with cyclic capillary wet-ting and drying moisture regimes. Results showed that evaporation driven upward transport occurred even during the first 2 months of wetting-drying regimes. Evaporation driven upward transport may control the U movement in the soil profile in an arid climate. The new system did not generate any uranium-containing wastewater. • Simulates the upward transport process of pollutants with different pollution levels and species. • Simultaneously simulate the transport process of multiple pollutants simultaneously. • Evaluate the influence of biogeochemical factors on pollutant transport such as various cations and anions (Ca, Mg and carbonates) in water.