Publication Notices

Notifications of the Newest Publications and Reports Released by ERDC

Contact ERDC Library

601.501.7632 - text
601.634.2355 - voice


ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: Residues
  • Dissolution of NTO, DNAN, and Insensitive Munitions Formulations and Their Fates in Soils: SERDP ER-2220

    Abstract: The US military is interested in replacing TNT (2,4,6-trinitrotoluene) and RDX (1,3,5-hexahydro-1,3,5-trinitro-1,3,5-triazine) with DNAN (2,4-dinitroanisole) and NTO (3-nitro-1,2,4-triazol-5-one), which have similar explosive characteristics but are less likely to detonate unintentionally. Although these replacements are good explosives, basic information about their fate and transport was needed to evaluate their environmental impact and life-cycle management. This project measured their dissolution, photodegradation, and how aqueous solutions interact with soils, data critical to determining exposure potential and, consequently, risk.
  • Determination of Residual Low-Order Detonation Particle Characteristics from Composition B Mortar Rounds

    Empirical measurements of the spatial distribution, particle-size distribution, mass, morphology, and energetic composition of particles from low-order (LO) detonations are critical to accurately characterizing environ-mental impacts on military training ranges. This study demonstrated a method of generating and characterizing LO-detonation particles, previously applied to insensitive munitions, to 81 mm mortar rounds containing the conventional explosive formulation Composition B. The three sampled rounds had estimated detonation efficiencies ranging from 64% to 82% as measured by sampled residual energetic material. For all sampled rounds, energetic deposition rates were highest closer to the point of detonation; however, the mass per radial meter varied. The majority of particles (>60%), by mass, were <2 mm in size. However, the spatial distribution of the <2 mm particles from the point of detonation varied between the three sampled rounds. In addition to the particle-size-distribution results, several method performance observations were made, including command-detonation configurations, sampling quality control, particle-shape influence on laser-diffraction particle-size analysis (LD-PSA), and energetic purity trends. Overall, this study demonstrated the successful characterization of Composition B LO-detonation particles from command detonation through combined analysis by LD-PSA and sieving.