Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Snow construction
Clear
  • Compressed Snow Blocks: Evaluating the Feasibility of Adapting Earth Block Technology for Cold Regions

    Abstract: Snow construction plays a crucial role in military operations in cold regions, providing tactical fortifications, thermal insulation, and emergency infrastructure in environments where conventional building materials are scarce or require extensive infrastructure for support. Current snow construction methods, including manual piling and compaction, are labor-intensive and inconsistent, limiting their use in large-scale or time-sensitive operations. This study explores the feasibility of adapting a compressed earth block (CEB) machine to produce compressed snow blocks (CSBs) as modular, uniform building units for cold-region applications. Using an AECT Impact 2001A hydraulic press, naturally occurring snow was processed with a snowblower and compacted at maximum operating pressure (i.e., 20,684 kPa) to evaluate block formation, dimensional consistency, and density. The machine successfully produced relatively consistent CSBs, but the initial 3–4 blocks following block height adjustment were generally unsuccessful (e.g., incorrect block height or collapsed/broke) while the machine reached its steady state cyclic condition. These blocks were discarded and excluded from the dataset. The successful CSBs had mean block heights of 7.76 ± 0.56 cm and densities comparable to ice (i.e., 0.83 g/cm ³). Variations in block height and mass may be attributed to manual snow loading and minor material impurities. While the dataset is limited, the results warrant further investigation into this technology, particularly regarding CSB strength (i.e., hardness and compressive strength) and performance under variable snow and environmental conditions. Mechanized snow compaction using existing CEB technology is technically feasible and capable of producing uniform, structurally stable CSBs but requires further investigation and modifications to reach its full potential. With design improvements such as automated snow feeding, cold-resistant components, and system winterization, this approach could enable scalable CSB production for rapid, on-site construction of snow-based structures in Arctic environments, supporting the military and civilian needs.
  • Ballistic Protection Using Snow

    Abstract: Small (5.56 mm, 7.62 mm and 9 mm) and medium (12.7 mm) arms rounds were fired at snow-filled 1.5m cubic gabions in a mid-winter condition in Fairbanks, Alaska. The rounds were excavated and penetration by each ammunition type was measured. A distribution and average of penetration depth was determined. All 320 rounds fired were captured within 1.5m after entering the snow barrier. Comparison with published models of ballistics penetration of snow showed mixed results with several matching our data within 10% and all but one within 32%. However, most of these models are simplistic in that they accommodate limited variables and therefore may not be expected to perform well in all settings. We conclude that snow-based ballistics protection structures can be quickly and efficiently erected in suitable environments and with minimal size, can provide reliable protection against small and medium arms fire.