Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Materials--Testing
Clear
  • Thermomechanical Material Characterization of Polyethylene Terephthalate Glycol Carbon Fiber 30% for Large-Format Additive Manufacturing of Polymer Structures

    Abstract: Large-format additive manufacturing (LFAM) is used to print large-scale polymer structures. An understanding of the thermal and mechanical properties of polymers suitable for large-scale extrusion is needed for de-sign and production capabilities. An in-house-built LFAM printer was used to print polyethylene terephthalate glycol with 30% short carbon fiber (PETG CF30%) samples for thermomechanical characterization. Thermogravimetric analysis confirmed the samples had 30% carbon fiber by weight. X-ray microscopy and porosity studies found 25% porosity for undried material and 1.63% porosity for dry material. Differential scanning calorimetry showed a glass transition temperature (Tg) of 66°C, while dynamic mechanical analysis found Tg to be 82°C. The rheology indicated that PETG CF30% is a good printing material at 220°C–250°C. Bending experiments showed an average of 48.5 megapascals (MPa) for flexural strength, while tensile experiments found an average tensile strength of 25.0 MPa at room temperature. Comparison with the literature demonstrated that the 3D-printed PETG CF30% had a high Young’s modulus and was of similar tensile strength. For design purposes, prints from LFAM should be considered from a bead–layer–part standpoint. For testing purposes, both material choice and print parameters should be considered, especially when considering large layer heights.
  • Determination of Nanomaterial Viscosity and Rheology Properties Using a Rotational Rheometer

    Abstract: Rheology studies the flow of matter and is one of the most important methods for materials characterization because flow behavior is responsive to properties such as molecular weight and molecular weight distribution. Rheological properties help practitioners understand fluid flow and how to improve manufacturing processes. Rheometers have been extensively used to determine the viscosity and rheological properties of different materials because the measurements are quick, accurate, and reliable. In this standard operating procedure, a general protocol using a rotational rheometer is developed for characterizing rheological properties of nanomaterials. Procedures and recommendations for sample preparation, instrument preparation, sample measurements, and results analysis are included. The procedure was tested on a variety of carbon-based nanomaterials.