Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: Water waves--Attenuation
  • Wave Attenuation of Coastal Mangroves at a Near-Prototype Scale

    Abstract: A physical model study investigating the dissipation of wave energy by a 1:2.1 scale North American red mangrove forest was performed in a large-scale flume. The objectives were to measure the amount of wave attenuation afforded by mangroves, identify key hydrodynamic parameters influencing wave attenuation, and provide methodologies for application. Seventy-two hydrodynamic conditions, comprising irregular and regular waves, were tested. The analysis related the dissipation to three formulations that can provide estimates of wave attenuation for flood risk management projects considering mangroves: damping coefficient β, drag coefficient CD, and Manning’s roughness coefficient n. The attenuation of the incident wave height through the 15.12 m long, 1:2.1 scale mangrove forest was exponential in form and varied from 13%–77%. Water depth and incident wave height strongly influenced the amount of wave attenuation. Accounting for differences in water depth using the sub-merged volume fraction resulted in a common fit of the damping coefficient as a function of relative wave height and wave steepness. The drag coefficient demonstrated a stronger relationship with the Keulegan–Carpenter number than the Reynolds number. The linear relationship be-tween relative depth and Manning’s n was stronger than that between Manning’s n and either relative wave height or wave steep
  • Implementation of Flexible Vegetation into CSHORE for Modeling Wave Attenuation

    Abstract: This technical report presents the new numerical modeling capabilities for simulating wave attenuation and mean water level changes through flexible vegetation such as smooth cordgrass in coastal and marine wetlands. These capabilities were implemented into the Cross-SHORE (CSHORE) numerical model. The biomechanical properties of vegetation such as dimensions, flexibility, and bending strength are parameterized in terms of the scaling law. Correspondingly, a new formulation of the vegetation drag coefficient, CD, is developed using field data from a salt marsh in Terrebonne Bay, LA, by considering spatially varying effective stem and blade heights of species. This report also presents a general procedure for using the model to simulate hydrodynamic variables (i.e., waves, currents, mean water levels) at vegetated coasts, which are used to quantify the effects of wave attenuation and reduction of surge and runup due to vegetation. Preliminary model validation was conducted by simulating a set of laboratory experiments on synthetic vegetation, which mimicked the flexibility of Spartina alterniflora. The validation results indicate that the newly developed vegetation capabilities enable CSHORE to predict changes of wave heights and water levels through marshes by considering species-specific biomechanical features. The model is also applicable to assess vegetation effectiveness against waves and surges.