Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: Explosives--Military--Residues
  • Live-Fire Validation of Command-Detonation Residues Testing Using an 81 mm IMX-104 Munition

    Abstract: Postdetonation energetic residues can have environmental impacts that present a risk to military training-range sustainment. As munitions with new explosive formulations are developed and fielded, quantitative methods for assessing their residues are needed. Command detonation (i.e., static firing) allows residue testing to occur early in the acquisition process; however, its representation of live-fire residue production is uncertain due to differences in the initiation mechanism and cartridge orientation. This study aims to validate residue testing by command detonation through statistical comparison of residue deposition rates between live fire and command detonation. Live-fire residues were collected from fourteen 81 mm IMX-104 mortar cartridges fired onto snow, and deposition rates were compared with previous command-detonation tests of the same munition. Average live-fire deposition rates were 8000 mg NTO (3-nitro-1,2,4-triazol-5-one), 60 mg DNAN (2,4-dinitroanisole), 20 mg RDX (1,3,5-trinitroperhydro-1,3,5-triazine), and 2 mg HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) per cartridge. Compared to command detonation, live fire of the study munition produced significantly greater residues of NTO (p < 0.0001) and RDX (p = 0.01) but not DNAN (p = 0.067). Although absolute deposition rates of some IMX-104 compounds differed, command detonation was successful at predicting the order of magnitude of each IMX-104 compound for the studied 81 mm munition.
  • Predicting the Impact of Aqueous Ions on Fate and Transport of Munition Compounds

    Abstract: A model framework for natural water has been developed using computational chemistry techniques to elucidate the interactions between solvated munition compounds and eight common ions in naturally occurring water sources. The interaction energies, residence times, coordination statistics, and surface preferences of nine munition related compounds with each ion were evaluated. The propensity of these interactions to increase degradation of the munition compound was predicted using accelerated replica QM/MM simulations. The degradation prediction data qualitatively align with previous quantum mechanical studies. The results suggest that primary ions of interest for fate and transport modeling of munition compounds in natural waters may follow the relative importance of SO₄²⁻, Cl⁻ ≫ HCO₃⁻, Na⁺, Mg²⁺ > Ca²⁺, K⁺, and NH₄⁺.