Publication Notices

Notifications of the Newest Publications and Reports Released by ERDC

Contact ERDC Library

601.501.7632 - text
601.634.2355 - voice


ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: Flood forecasting
  • Sabine Pass to Galveston Bay, TX Pre-Construction, Engineering and Design (PED): Coastal Storm Surge and Wave Hazard Assessment: Report 1 – Background and Approach

    Abstract: The US Army Corps of Engineers, Galveston District, is executing the Sabine Pass to Galveston Bay Coastal Storm Risk Management (CSRM) project for Brazoria, Jefferson, and Orange Counties regions. The project is currently in the Pre-construction, Engineering, and Design phase. This report documents coastal storm water level and wave hazards for the Port Arthur CSRM structures. Coastal storm water level (SWL) and wave loading and overtopping are quantified using high-fidelity hydrodynamic modeling and stochastic simulations. The CSTORM coupled water level and wave modeling system simulated 195 synthetic tropical storms on three relative sea level change scenarios for with- and without-project meshes. Annual exceedance probability (AEP) mean values were reported for the range of 0.2 to 0.001 for peak SWL and wave height (Hm0) along with associated confidence limits. Wave period and mean wave direction associated with Hm0 were also computed. A response-based stochastic simulation approach is applied to compute AEP runup and overtopping for levees and overtopping, nappe geometry, and combined hydrostatic and hydrodynamic fluid pressures for floodwalls. CSRM structure crest design elevations are defined based on overtopping rates corresponding to incipient damage. Survivability and resilience are evaluated. A system-wide hazard level assessment was conducted to establish final recommended system-wide CSRM structure elevations.
  • Changes in Climate and Its Effect on Timing of Snowmelt and Intensity-Duration-Frequency Curves

    Abstract: Snow is a critical water resource for much of the U.S. and failure to ac-count for changes in climate could deleteriously impact military assets. In this study, we produced historical and future snow trends through modeling at three military sites (in Washington, Colorado, and North Dakota) and the Western U.S. For selected rivers, we performed seasonal trend analysis of discharge extremes. We calculated flood frequency curves and estimated the probability of occurrence of future annual maximum daily rainfall depths. Additionally, we generated intensity-duration-frequency curves (IDF) to find rainfall intensities at several return levels. Generally, our results showed a decreasing trend in historical and future snow duration, rain-on-snow events, and snowmelt runoff. This decreasing trend in snowpack could reduce water resources. A statistically significant increase in maximum streamflow for most rivers at the Washington and North Dakota sites occurred for several months of the year. In Colorado, only a few months indicated such an increase. Future IDF curves for Colorado and North Dakota indicated a slight increase in rainfall intensity whereas the Washington site had about a twofold increase. This increase in rainfall in-tensity could result in major flood events, demonstrating the importance of accounting for climate changes in infrastructure planning.