Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Nitroguanidine
Clear
  • Identifying Degradation Products Responsible for Increased Toxicity of UV-Degraded Insensitive Munitions

    Abstract: Degradation of insensitive munitions (IMs) by ultraviolet (UV) light has become a concern following observations that some UV-degradation products have increased toxicity relative to parent compounds in aquatic organisms. This investigation focused on the Army's IM formulation, IMX101, composed of three IM constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ). The IM constituents and IMX101 were irradiated in a UV photo-reactor and then administered to Daphnia pulex in acute (48 h) exposures comparing toxicities relative to the parent materials. UV-degradation of DNAN had little effect on mortality whereas mortality for UV-degraded NTO and NQ increased by factors of 40.3 and 1240, making UV-degraded NQ the principle driver of toxicity when IMX101 is UV-degraded. Toxicity investigations for specific products formed during UV-degradation of NQ, confirmed greater toxicity than the parent NQ for degradation products. Summation of the individual toxic units for the complete set of individually measured UV-degradation products identified for NQ only accounted for 25% of the overall toxicity measured in the exposures to the UV-degraded NQ product mixture. Given the underestimation of toxicity using the sum toxic units for the individually measured UV-degradation products of NQ, we conclude that: (1) other unidentified NQ degradation products contributed principally to toxicity and/or (2) synergistic toxicological interactions occurred among the NQ degradation product mixture that exacerbated toxicity.
  • Photo Degradation Kinetics of Insensitive Munitions Constituents Nitroguanidine, Nitrotriazolone, and Dinitroanisole in Natural Waters

    Abstract: Herein the matrix effects on the kinetics of aqueous photolysis for the individual munitions constituents of IMX-101: nitroguanidine (NQ), dinitroanisole (DNAN), and nitrotriazolone (NTO) are reported along with the environmentally relevant kinetics and quantum yields. Photolysis potentially represents a major degradation pathway for these munitions in the environment and further understanding the complex matrices effects on photolytic kinetics was needed. Aqueous systems are of particular interest due to the high solubility of NQ (3,800 ppm) and NTO (16,642 ppm) compared to the traditional munitions trinitrotoluene (TNT, 100.5 ppm) and 1,3,5-trinitro-1,3,5-triazine (RDX, 59.9 ppm). Environmental half-lives (and quantum yields) were found to be 0.44 days, 0.83 days, and 4.4 days for NQ, DNAN, and NTO, respectively, under natural sunlight. In laboratory experiments using nominally 300 nm bulbs in a merry-go-round style reactor in DI water the relative rate of photolysis for the three munitions constituents followed the same order NQ > DNAN > NTO, where DNAN and NTO reacted 57 and 115 times more slowly, respectively, than NQ. In the various environmentally relevant matrices tested in the laboratory experiments NQ was not significantly affected, DNAN showed a faster degradation with increasing ionic strength, and NTO showed a modest salinity and pH dependence on its rate of photolysis.