Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Biological control
Clear
  • Field Site Analysis of Giant Salvinia Nitrogen Content and Salvinia Weevil Density

    Abstract: In 2012, a giant salvinia (Salvinia molesta Mitchell) biological control project was initiated in Louisiana. Although similar quantities of salvinia weevils (Cyrtobagous salviniae Calder and Sands) were released at all sites, weevil densities were highly variable among sites. Additionally, signs of plant nitrogen depletion (yellowing plants) were observed at some sites. Because it is well known that plant nutrition can affect the success of a biocontrol agent because of slowed development and/or reduced fecundity, the correlation between giant salvinia nitrogen content and Salvinia weevil density was investigated during the growing seasons of the second and fourth years. During 2013, weevils were reintroduced to sites, and the magnitude of adult weevil density increase varied by site. Giant salvinia nitrogen content varied among sites and sampling dates. Upper Big Break plants had greater nitrogen than all other sites during 75% of sampling dates. Additionally, adult and larval densities were significantly correlated to plant nitrogen content. During 2015, trends were less distinct and weevil densities and nitrogen content varied based on the interaction between sampling date and site, but a significant correlation was not detected. Results confirmed published reports of the importance of plant nitrogen content to salvinia weevil productivity. Additional studies are warranted to evaluate and understand the role of nitrogen at giant salvinia biocontrol field sites.
  • Geographic and Genetic Variation in Susceptibility of Butomus umbellatus to Foliar Fungal Pathogens

    Abstract: Large-scale patterns of plant invasions may reflect regional heterogeneity in biotic and abiotic factors and genetic variation within and between invading populations. Having information on how effects of biotic resistance vary spatially can be especially important when implementing biological control because introduced agents may have different Impacts through interactions with host-plant genotype, local environment, or other novel enemies. We conducted a series of field surveys and laboratory studies to determine whether there was evidence of biotic resistance, as foliar fungal pathogens, in two introduced genotypes (triploid G1, diploid G4) of the Eurasian wetland weed, Butomus umbellatus L. in the USA. We tested whether genotypes differed in disease attack and whether spatial patterns in disease incidence were related to geographic location or climate for either genotype. After accounting for location (latitude, climate), G1 plants had lower disease incidence than G4 plants in the field (38% vs. 70%) but similar pathogen richness. In contrast, bioassays revealed G1 plants consistently received a higher damage score and had larger leaf lesions regardless of pathogen. These results demonstrate that two widespread B. umbellatus genotypes exhibit different susceptibility to pathogens and effectiveness of pathogen biological controls may depend on local conditions.