Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Product life cycle--Environmental aspects
Clear
  • The Importance of Environmental Product Declarations in the Decarbonization Effort

    Abstract: An Environmental Product Declaration (EPD) is a disclosure document that communicates how a product or material affects the environment throughout its life cycle. EPDs are used across many industries and government organizations as an accurate source of information when making procurement decisions to minimize environmental impacts. Developed by businesses and certified by third-party organizations, EPDs are created to communicate the environmental impacts of specified life-cycle stages of a product. As such, EPDs can be an important tool for organizations working toward carbon reduction goals, such as the Army’s decarbonization goals of Executive Order (EO) 14,057 and the Army Climate Strategy. This document summarizes the current state of EPDs, including how they are created, how they can be used to help analyze the environmental impacts of construction materials, and how they are being used by government entities. Also discussed are other decarbonization tools and methods to integrate EPDs, providing a more wholistic approach to the construction industry’s activities and impacts. The document concludes with a discussion of the challenges and the future of EPDs.
  • Environmental Life Cycle Assessment on CNTRENE® 1030 Material and CNT Based Sensors

    Abstract: This report details a study investigating the environmental impacts associated with the development and manufacturing of carbon nanotube (CNT)–based ink (called CNTRENE 1030 material) and novel CNT temperature, flex, and moisture sensors. Undertaken by a private-public partnership involving Brewer Science (Rolla, Missouri), Jordan Valley In-novation Center of Missouri State University (Springfield, Missouri), and the US Army Engineer Research and Development Center (Vicksburg, Mississippi), this work demonstrates the environmental life cycle assessment (ELCA) methodology as a diagnostic tool to pinpoint the particular processes and materials posing the greatest environmental impact associated with the manufacture of the CNTRENE material and CNT-based sensor devices. Additionally, ELCA tracked the degree to which optimizing the device manufacturing process for full production also changed its predicted marginal environmental impacts.