Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Nanostructured materials
Clear
  • Cooperative Molecular Interaction-Based Highly Efficient Capturing of Ultrashort- and Short-Chain Emerging Per- and Polyfluoroalkyl Substances Using Multifunctional Nanoadsorbents

    Abstract: The short-chain and ultrashort-chain per- and polyfluoroalkyl substances are bioaccumulative, carcinogenic to humans, and harder to remove using current technologies. Herein, we report the development of nonafluorobutane-sulfonyl and polyethylene-imine -conjugated Fe3O4 magnetic nanoparticle-based magnetic nanoadsorbents and demonstrated the novel adsorbent has the capability for highly efficient removal of six different short- and ultrashort-chain PFAS from drinking and environmental water samples. Reported experimental data indicates by capitalizing the cooperative hydrophobic, fluorophilic, and electrostatic interaction processes, NFBS-PEI-conjugated magnetic nanoadsorbents can remove ~100% short-chain perfluorobutanesulfonic acid within 30 min from the water sample with a maximum absorption capacity qm of ~234 mg g−1. Furthermore, to show how cooperative interactions are necessary for effective capturing of ultrashort and short PFAS, a comparative study has been performed using PEI-attached magnetic nanoadsorbents without NFBS and acid-functionalized magnetic nanoadsorbents without PEI and NFBS. Reported data show the ultrashort-chain perfluoropropanesulfonic acid capture efficiency is the highest for the NFBS-PEI-attached nanoadsorbent. Moreover, reported data demonstrate that nanoadsorbents can be used for effective removal of short-chain PFAS and ultrashort-chain PFAS simultaneously from reservoir, lake, tape, and river water samples within 30 min, which shows the potential of nanoadsorbents for real-life PFAS remediation.
  • Determination of Nanomaterial Viscosity and Rheology Properties Using a Rotational Rheometer

    Abstract: Rheology studies the flow of matter and is one of the most important methods for materials characterization because flow behavior is responsive to properties such as molecular weight and molecular weight distribution. Rheological properties help practitioners understand fluid flow and how to improve manufacturing processes. Rheometers have been extensively used to determine the viscosity and rheological properties of different materials because the measurements are quick, accurate, and reliable. In this standard operating procedure, a general protocol using a rotational rheometer is developed for characterizing rheological properties of nanomaterials. Procedures and recommendations for sample preparation, instrument preparation, sample measurements, and results analysis are included. The procedure was tested on a variety of carbon-based nanomaterials.
  • Environmental Life Cycle Assessment on CNTRENE® 1030 Material and CNT Based Sensors

    Abstract: This report details a study investigating the environmental impacts associated with the development and manufacturing of carbon nanotube (CNT)–based ink (called CNTRENE 1030 material) and novel CNT temperature, flex, and moisture sensors. Undertaken by a private-public partnership involving Brewer Science (Rolla, Missouri), Jordan Valley In-novation Center of Missouri State University (Springfield, Missouri), and the US Army Engineer Research and Development Center (Vicksburg, Mississippi), this work demonstrates the environmental life cycle assessment (ELCA) methodology as a diagnostic tool to pinpoint the particular processes and materials posing the greatest environmental impact associated with the manufacture of the CNTRENE material and CNT-based sensor devices. Additionally, ELCA tracked the degree to which optimizing the device manufacturing process for full production also changed its predicted marginal environmental impacts.