Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Dust control
Clear
  • Simulating Environmental Conditions for a Severe Dust Storm in Southwest Asia Using the Weather Research and Forecasting Model: A Model Configuration Sensitivity Study

    Abstract: Dust aerosols create hazardous air quality conditions that affect human health, visibility, and military operations. Numerical weather prediction models are important tools for predicting atmospheric dust by simulating dust emission, transport, and chemical evolution. We assessed the Weather Research and Forecasting (WRF) model’s ability to simulate the atmospheric conditions that drove a major dust event in Southwest Asia during July–August 2018. We evaluated five WRF configurations against satellite observations and Reanalysis Version 5 (ERA5) reanalysis data, focusing on the event’s synoptic evolution, storm progression, vertical structure, and surface wind fields. Results revealed substantial differences between configurations using Noah and Noah Multiparameterization (Noah-MP) land surface models (LSMs), with Noah providing a superior representation of meteorological conditions despite theoretical expectations of similar performance in arid environments. The best-performing configuration (Noah LSM, Mellor–Yamada–Nakanishi–Niino planetary boundary layer scheme, and spectral nudging) of the five considered accurately simulated the progression of a low-level jet streak and the associated surface winds responsible for dust mobilization throughout the event. This study supports the US Army Engineer Research and Development Center’s efforts to improve dust forecasting and establishes a foundation for evaluating dust emission parameterizations by isolating meteorological forcing errors from dust model physics.
  • Meteorological Influences of a Major Dust Storm in Southwest Asia during July–August 2018

    Abstract: Dust storms can be hazardous for aviation, military activities, and respiratory health and can occur on a wide variety of spatiotemporal scales with little to no warning. To properly forecast these storms, a comprehensive understanding of the meteorological dynamics that control their evolution is a prerequisite. To that end, we chose a major dust storm that occurred in Southwest Asia during July–August 2018 and conducted an observation-based analysis of the meteorological conditions that influenced the storm’s evolution. We found that the main impetus behind the dust storm was a large-scale meteorological system (i.e., a cyclone) that affected Southwest Asia. It seems that cascading effects from this system produced a smaller, near-surface warm anomaly in Mesopotamia that may have triggered the dust storm, guided its trajectory over the Arabian Peninsula, and potentially catalyzed the development of a small low-pressure system over the southeastern end of the peninsula. This low-pressure system may have contributed to some convective activity over the same region. This type of analysis may provide important information about large-scale meteorological forcings for not only this particular dust storm but also for future dust storms in Southwest Asia and other regions of the world.
  • Corrosion and Performance of Dust Palliatives: Laboratory and Field Studies

    Abstract: This report details laboratory and field experiments on BioPreferred® dust suppressants to assess performance and corrosion characteristics. Numerous bio-based dust suppressant products are marketed, but little data are available to assess performance for dust abatement and corrosion of common metals. A laboratory study used an air impingement device and the Portable In-Situ Wind ERosion Laboratory (PI-SWERL) to simulate wind speeds similar to those in field conditions for rotary wing aircraft. Laboratory corrosion studies used metal coupons imbedded in soil treated with dust palliative. Field trials were conducted using ground vehicle traffic to minimize cost and lower safety concerns while increasing surface wear from repetitive traffic. These studies clearly show that bio-based products demonstrate low corrosion potential with similar dust abatement performance to synthetic-based agents.