Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: Vegetation index
  • Estimating Growing-Season Root Zone Soil Moisture from Vegetation Index-Based Evapotranspiration Fraction and Soil Properties in the Northwest Mountain Region, USA

    Abstract: A soil moisture retrieval method is proposed, in the absence of ground-based auxiliary measurements, by deriving the soil moisture content relationship from the satellite vegetation index-based evapotranspiration fraction and soil moisture physical properties of a soil type. A temperature–vegetation dryness index threshold value is also proposed to identify water bodies and underlying saturated areas. Verification of the retrieved growing season soil moisture was performed by comparative analysis of soil moisture obtained by observed conventional in situ point measurements at the 239-km2 Reynolds Creek Experimental Watershed, Idaho, USA (2006–2009), and at the US Climate Reference Network (USCRN) soil moisture measurement sites in Sundance, Wyoming (2012–2015), and Lewistown, Montana (2014–2015). The proposed method best represented the effective root zone soil moisture condition, at a depth between 50 and 100 cm, with an overall average R2 value of 0.72 and average root mean square error (RMSE) of 0.042.
  • A Multi-biome Study of Tree Cover Detection Using the Forest Cover Index

    Abstract: Tree cover maps derived from satellite and aerial imagery directly support civil and military operations. However, distinguishing tree cover from other vegetative land covers is an analytical challenge. While the commonly used Normalized Difference Vegetation Index (NDVI) can identify vegetative cover, it does not consistently distinguish between tree and low-stature vegetation. The Forest Cover Index (FCI) algorithm was developed to take the multiplicative product of the red and near infrared bands and apply a threshold to separate tree cover from non-tree cover in multispectral imagery (MSI). Previous testing focused on one study site using 2-m resolution commercial MSI from WorldView-2 and 30-m resolution imagery from Landsat-7. New testing in this work used 3-m imagery from PlanetScope and 10-m imagery from Sentinel-2 in imagery in sites across 12 biomes in South and Central America and North Korea. Overall accuracy ranged between 23% and 97% for Sentinel-2 imagery and between 51% and 98% for PlanetScope imagery. Future research will focus on automating the identification of the threshold that separates tree from other land covers, exploring use of the output for machine learning applications, and incorporating ancillary data such as digital surface models and existing tree cover maps.