Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Colloidal
Clear
  • CuO Enhances the Photocatalytic Activity of Fe₂O₃ through Synergistic Reactive Oxygen Species Interactions

    Abstract: Iron oxide (α-Fe2O3, hematite) colloids were synthesized under hydrothermal conditions and investigated as catalysts for the photodegradation of an organic dye under broad-spectrum illumination. To enhance photocatalytic performance, Fe2O3 was combined with other transition-metal oxide (TMO) colloids (e.g., CuO and ZnO), which are sensitive to different regions of the solar spectrum (far visible and ultraviolet, respectively), using a ternary blending approach for compositional mixtures. For a variety of ZnO/Fe2O3/CuO mole ratios, the pseudo-first-order rate constant for methyl orange degradation was at least double the sum of the individual Fe2O3 and CuO rate constants, indicating there is an underlying synergy governing the photocatalysis reaction with these combinations of TMOs. A full compositional study was carried out to map the interactions between the three TMOs. Additional experiments probed the identity and role of reactive oxygen species and elucidated the mechanism by which CuO enhanced Fe2O3 photodegradation while ZnO did not. The increased photocatalytic performance of Fe2O3 in the presence of CuO was associated with hydroxyl radical ROS, consistent with heterogeneous photo-Fenton mechanisms, which are not accessible by ZnO. These results imply that low-cost photocatalytic materials can be engineered for high performance under solar illumination by selective pairing of TMOs with compatible ROS.