Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Soil absorption and adsorption
Clear
  • Dissolution of NTO, DNAN, and Insensitive Munitions Formulations and Their Fates in Soils: SERDP ER-2220

    Abstract: The US military is interested in replacing TNT (2,4,6-trinitrotoluene) and RDX (1,3,5-hexahydro-1,3,5-trinitro-1,3,5-triazine) with DNAN (2,4-dinitroanisole) and NTO (3-nitro-1,2,4-triazol-5-one), which have similar explosive characteristics but are less likely to detonate unintentionally. Although these replacements are good explosives, basic information about their fate and transport was needed to evaluate their environmental impact and life-cycle management. This project measured their dissolution, photodegradation, and how aqueous solutions interact with soils, data critical to determining exposure potential and, consequently, risk.
  • Determination of Residual Low-Order Detonation Particle Characteristics from IMX-104 Mortar Rounds

    ABSTRACT: The environmental fate and transport of energetic compounds on military training ranges are largely controlled by the particle characteristics of low-order detonations. This study demonstrated a method of command detonation, field sampling, laboratory processing, and analysis techniques for characterizing low-order detonation particles from 60 mm and 81 mm mortar rounds containing the insensitive munition formulation IMX-104. Particles deposited from three rounds of each caliber were comprehensively sampled and characterized for particle size, energetic purity, and morphology. The 60 mm rounds were command-detonated low order consistently (seven low-order detonations of seven tested rounds), with consumption efficiencies of 62%–80% (n = 3). The 81 mm rounds detonated low order inconsistently (three low-order detonations of ten tested rounds), possibly because the rounds were sourced from manufacturing test runs. These rounds had lower consumption efficiencies of 39%–64% (n = 3). Particle-size distributions showed significant variability between munition calibers, between rounds of the same caliber, and with distance from the detonation point. The study reviewed command-detonation configurations, particle transfer losses during sampling and particle-size analysis, and variations in the energetic purity of recovered particles. Overall, this study demonstrated the successful characterization of IMX-104 low-order detonation particles from command detonation to analysis.