Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Ships--Maneuverability--Computer simulation
Clear
  • Miami Harbor Entrance Channel Improvements Study: Ship Simulation Report

    Abstract: The US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory (ERDC-CHL), Ship/Tow Simulator (STS) was used to perform a navigation study assisting the US Army Corps of Engineers (USACE), Jacksonville District. The study evaluates additional navigation channel modifications from the previous 2019 study to allow larger containerships to call at the Port of Miami. This study was conducted at the CHL real-time STS. Real-time refers to the fact that model time uses a 1:1 ratio to prototype time. In addition, real-world environmental forces were simulated and acted upon the modeled ships during the study. These forces included currents, wind, bathymetry, and bank effects. Simulations for the proposed modifications were conducted at CHL for 1 week in August 2023. Four Biscayne Bay pilots participated in the validation and testing exercises. The design vessels include the MSC Daniela (14,000 twenty-foot equivalent unit [TEU]) container ship and the Maersk Guayaquil (12,000 TEU) container ship. Simulation results are presented in the form of track plots and pilot questionnaires, which were reviewed to develop the conclusions and recommendations.
  • Houston Ship Channel Expansion Improvement Project – Navigation Channel Improvement Study: Ship Simulation Results

    Abstract: In 2020, the US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory, provided technical oversight during a navigation study to assist the Galveston District evaluation of different channel widening alternatives for larger ships transiting the Houston Ship Channel (HSC), Texas. The widening proposals encompassed several areas of the HSC including the Bay Section, the Bayport Ship Channel, Barbours Cut Channel, and the Bayou Section. The study was performed at the San Jacinto College Maritime Technology and Training Center (SJCMTTC) Ship/Tug Simulator (STS) Facility in La Porte, TX. The SJCMTTC STS is a real-time simulator; therefore, events on the simulator happen at the same time rate as real life. A variety of environmental forces act upon the ship during the simulation transit. These include currents, wind, waves, bathymetry, and ship-to-ship interaction. Online simulations of the project were conducted at SJCMTTC over a 3-week period – May through June 2020. Several mariners including Houston Pilots and G&H tugboat Captains participated in the testing and validation exercises. ERDC oversight was performed remotely because of the COVID-19 pandemic. Results in the form of engineering observations, track plots, and pilot interviews were reviewed to develop final conclusions and recommendations regarding the final design.
  • Mobile Harbor, Alabama Navigation Study: Ship Simulation Report

    Abstract: Mobile Bay is a large estuary located in the southwest corner of Alabama, which connects to the Gulf of Mexico. Mobile Harbor contains the only port in the state that supports ocean-going vessels. Some of the larger vessels calling on the port experience transit delays and limited cargo capacity, so a study was conducted by the US Army Corps of Engineers, Mobile District (CESAM), and the Alabama State Port Authority to investigate channel improvements. In 2017, the US Army Engineer Research and Development Center (ERDC) assisted CESAM in screening proposed deepening and widening alternatives in Mobile Bay by completing a Feasibility Level Ship Simulation (FLSS) study using the ERDC Ship/Tow Simulator. These lower-resolution databases from the FLSS study were used as a foundation to complete a more robust navigation study in 2020 to test the proposed modifications to Mobile Harbor. During this study, three main areas were focused on: a bend easing, a passing lane, and a turning basin. Testing of the proposed design was evaluated over the course of 2 weeks with eight pilots. Assessment of the proposed modifications was accomplished through analysis of ship simulations completed by experienced local pilots, discussions, track plots, run sheets, and final pilot surveys.