Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Friction
Clear
  • Assessing the Mechanisms Thought to Govern Ice and Snow Friction and Their Interplay with Substrate Brittle Behavior

    Abstract: Sliding friction on ice and snow is characteristically low at temperatures common on Earth’s surface. This slipperiness underlies efficient sleds, winter sports, and the need for specialized tires. Friction can also play micro-mechanical role affecting ice compressive and crushing strengths. Researchers have proposed several mechanisms thought to govern ice and snow friction, but directly validating the underlying mechanics has been difficult. This may be changing, as instruments capable of micro-scale measurements and imaging are now being brought to bear on friction studies. Nevertheless, given the broad regimes of practical interest (interaction length, temperature, speed, pressure, slider properties, etc.), it may be unrealistic to expect that a single mechanism accounts for why ice and snow are slippery. Because bulk ice, and the ice grains that constitute snow, are solids near their melting point at terrestrial temperatures, most research has focused on whether a lubricating water film forms at the interface with a slider. However, ice is extremely brittle, and dry-contact abrasion and wear at the front of sliders could prevent or delay a transition to lubricated contact. Also, water is a poor lubricant, and lubricating films thick enough to separate surface asperities may not form for many systems of interest. This article aims to assess our knowledge of the mechanics underlying ice and snow friction.
  • Development of Smartphone-Based Semi-Prepared Runway Operations (SPRO) Models and Methods

    Abstract: The U.S. Army Engineer Research and Development Center (ERDC) has developed a method for predicting surface friction response by use of ground vehicles equipped with deceleration-based measurement devices. Specifically, the ERDC has developed models and measurement methods between the Findlay Irvine Mk2 GripTester and a variety of deceleration measurement devices: Bowmonk AFM2 Mk3, Xsens MTi-G-710, two Android smartphones, and two iOS smartphones. These models show positive correlation between ground vehicle deceleration and fixed-slip surface continuous surface friction measurement. This effort extends prior work conducted by the U.S. Army ERDC in developing highly correlative models between the Findlay Irvine Mk2 GripTester and actual C-17 braking deceleration, measured via the runway condition rating (RCR) system. The models and measurement methods detailed here are of considerable use to semi-prepared airfield managers around the world needing to measure safe landing conditions following inclement weather. This work provides the tools necessary for airfield managers to quantify safe landing conditions for C-17 aircraft by using easily obtainable equipment and simple test standards.