Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Rotors (Helicopters)--Computer simulation
Clear
  • Helicopter Rotor Blade Planform Optimization Using Parametric Design and Multi-Objective Genetic Algorithm

    Abstract: In this paper, an automated framework is presented to perform helicopter rotor blade planform optimization. This framework contains three elements, Dakota, ParBlade, and RCAS. These elements are integrated into an environment control tool, Galaxy Simulation Builder, which is used to carry out the optimization. The main objective of this work is to conduct rotor performance design optimizations for forward flight and hover. The blade design variables manipulated by ParBlade are twist, sweep, and anhedral. The multi-objective genetic algorithm method is used in this study to search for the optimum blade design; the optimization objective is to minimize the rotor power required. Following design parameter substitution, ParBlade generates the modified blade shape and updates the rotor blade properties in the RCAS script before running RCAS. After the RCAS simulations are complete, the desired performance metrics (objectives and constraints) are extracted and returned to the Dakota optimizer. Demonstrative optimization case studies were conducted using a UH-60A main rotor as the base case. Rotor power in hover and forward flight, at advance ratio 𝜇𝜇 = 0.3, are used as objective functions. The results of this study show improvement in rotor power of 6.13% and 8.52% in hover and an advance ratio of 0.3, respectively. This configuration also yields greater reductions in rotor power for high advance ratios, e.g., 12.42% reduction at 𝜇𝜇 = 0.4.
  • Rotor Blade Design Framework for Airfoil Shape Optimization with Performance Considerations

    Abstract: A framework for optimizing rotor blade airfoil shape is presented. The framework uses two digital workflows created within the Galaxy Simulation Builder (GSB) software package. The first is a workflow enabling the automated creation of a surrogate model for predicting airfoil performance coefficients. An accurate surrogate model for the rapid generation of airfoil coefficient tables has been developed using linear interpolation techniques that is based on C81Gen and ARC2D CFD codes. The second workflow defines the rotor blade optimization problem using GSB and the Dakota numerical optimization library. The presented example uses a quasi-Newton optimization algorithm to optimize the tip region of the UH-60A main rotor blade with respect to vehicle performance. This is accomplished by morphing the blade tip airfoil shape for optimum power, subject to a constraint on the maximum pitch link load.