Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Rotors (Helicopters)
Clear
  • Application of Multi-fidelity Methods to Rotorcraft Performance Assessment

    Abstract: We present a Python-based multi-fidelity tool to estimate rotorcraft performance metrics. We use Gaussian-Process regression (GPR) methods to adaptively build a surrogate model using a small number of high-fidelity CFD points to improve estimates of performance metrics from a medium-fidelity comprehensive analysis model. To include GPR methods in our framework, we used the EmuKit Python package. Our framework adaptively chooses new high-fidelity points to run in regions where the model variance is high. These high-fidelity points are used to update the GPR model; convergence is reached when model variance is below a pre-determined level. To efficiently use our framework on large computer clusters, we implemented this in Galaxy Simulation Builder, an analysis tool that is designed to work on large parallel computing environments. The program is modular, and is designed to be agnostic to the number and names of dependent variables and to the number and identifying labels of the fidelity levels. We demonstrate our multi-fidelity modeling framework on a rotorcraft collective sweep (hover) simulation and compare the accuracy and time savings of the GPR model to that of a simulation run with CFD only.
  • New capabilities in CREATE™-AV Helios Version 11

    Abstract: CREATE™-AV Helios is a high-fidelity coupled CFD/CSD infrastructure developed by the U.S. Dept. of Defense for aeromechanics predictions of rotorcraft. This paper discusses new capabilities added to Helios version 11.0. A new fast-running reduced order aerodynamics option called ROAM has been added to enable faster-turnaround analysis. ROAM is Cartesian-based, employing an actuator line model for the rotor and an immersed boundary model for the fuselage. No near-body grid generation is required and simulations are significantly faster through a combination of larger timesteps and reduced cost per step. ROAM calculations of the JVX tiltrotor configuration give a comparably accurate download prediction to traditional body-fitted calculations with Helios, at 50X less computational cost. The unsteady wake in ROAM is not as well resolved, but wake interactions may be a less critical issue for many design considerations. The second capability discussed is the addition of six-degree-of-freedom capability to model store separation. Helios calculations of a generic wing/store/pylon case with the new 6-DOF capability are found to match identically to calculations with CREATE™-AV Kestrel, a code which has been extensively validated for store separation calculations over the past decade.